计及动态定价策略的电-氢综合能源站经济运行

杨家辉, 史超凡, 李佳玮, 郭红珍, 闫庆友, 檀勤良

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 13-23.

PDF(2179 KB)
PDF(2179 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 13-23. DOI: 10.12204/j.issn.1000-7229.2025.06.002
基于人工智能的新能源汽车优化运行与调度关键技术·栏目主持 杨博、姚伟、蒋林、杨强·

计及动态定价策略的电-氢综合能源站经济运行

作者信息 +

Economic Operation of Electric-Hydrogen Integrated Energy Station with Dynamic Pricing Strategy

Author information +
文章历史 +

摘要

【目的】为适应新能源汽车的快速增长和广泛应用,我国鼓励建设和发展一体化综合交通能源服务站,对此提出一种计及动态定价策略的电-氢综合能源站经济运行方法。【方法】首先,通过解析新能源汽车用户到达电-氢综合能源站的时序特征与充能行为特性,利用蒙特卡洛方法构建新能源汽车充能需求预测模型。其次,基于新能源汽车充能所需电量负荷比和新能源消纳率、综合能源站的储能容量动态变化特征和外部购能成本等因素,制定了包含动态售电价格和动态售氢价格的电-氢综合能源站动态定价策略,引导新能源汽车用户参与需求响应,同时针对氢能公交车和氢能环卫车进行负荷管理,提出电-氢综合能源站经济运行方法。【结果】算例仿真结果表明,相比固定定价策略,动态定价策略可显著提高电-氢综合能源站的收益,其售电、售氢收入和售能总收益分别提高了24.13%、4.57%和14.59%;引入负荷管理后,电-氢综合能源站的运行总成本下降10.3%,售能收益进一步提升。【结论】文章所提方法可突破固定定价策略的局限性,实现电-氢综合能源站经济运行。

Abstract

[Objective] China encourages the construction and development of integrated comprehensive transportation and energy service stations to accommodate the rapid growth and widespread adoption of new-energy vehicles. This study proposes an economic operation method for electric-hydrogen integrated energy stations that incorporates dynamic pricing strategies. [Methods] First, the study analyzes when new-energy vehicle users arrive at energy stations and how they charge their vehicles. Based on this, a charging demand prediction model is developed using the Monte Carlo method. Second, the study considers several factors. These include the power load ratio for charging, the absorption rate of new energy, changes in station storage capacity, and external purchasing costs. Based on these, a dynamic pricing strategy is formulated. The strategy includes both electricity and hydrogen pricing. This strategy encourages new-energy vehicle users to participate in demand response programs. It also helps manage the energy loads of hydrogen buses and sanitation vehicles. Based on this, an economic operation method for electric-hydrogen integrated energy stations is proposed. [Results] Simulation results show that dynamic pricing strategies significantly improve station revenue compared to fixed pricing strategies. Specifically, electricity sales, hydrogen sales, and total energy sales revenue increased by 24.13%, 4.57%, and 14.59%, respectively. Meanwhile, the total operating cost decreased by 10.3%, further boosting net revenue. [Conclusions] The proposed method overcomes the limitations of fixed pricing strategies and enables more economical operation of electric-hydrogen integrated energy stations.

关键词

电-氢综合能源站 / 动态定价策略 / 新能源汽车 / 需求响应

Key words

power-hydrogen integrated energy station / dynamic pricing strategy / new energy vehicles / demand response

引用本文

导出引用
杨家辉, 史超凡, 李佳玮, . 计及动态定价策略的电-氢综合能源站经济运行[J]. 电力建设. 2025, 46(6): 13-23 https://doi.org/10.12204/j.issn.1000-7229.2025.06.002
YANG Jiahui, SHI Chaofan, LI Jiawei, et al. Economic Operation of Electric-Hydrogen Integrated Energy Station with Dynamic Pricing Strategy[J]. Electric Power Construction. 2025, 46(6): 13-23 https://doi.org/10.12204/j.issn.1000-7229.2025.06.002
中图分类号: TM715   

参考文献

[1]
国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021-2035年)的通知[EB/OL].(2020-11-02)[2024-07-18]. https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm.
State Council of the People's Republic of China. Circular of the general office of the state council on printing and issuing the development plan of new energy automobile industry(2021-2035)[EB/OL].(2020-11-02)[2024-07-18]. https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm.
[2]
张天培. 中国新能源汽车保有量达2041万辆[N]. 人民日报海外版, 2024-01-12( 1).
[3]
柴茂荣. 氢能汽车发展现状及未来展望[J]. 中国石化, 2024(5): 37-40.
CHAI Maorong. Development status and future prospect of hydrogen energy vehicles[J]. Sinopec Monthly, 2024(5): 37-40.
[4]
中华人民共和国国家发展和改革委员会,国家能源局. 氢能产业发展中长期规划(2021-2035年)[EB/OL].(2022-03-23)[2024-07-18]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
National Development and Reform Commission of the People's Republic of China, National Energy Administration. Medium and long-term plan for the development of the hydrogen energy industry(2021-2035)[EB/OL].(2022-03-23)[2024-07-18]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
[5]
中国氢能联盟研究院. 燃料电池汽车公告统计[EB/OL].(2023-03-28) [2024-07-18]. https://www.chinah2data.com/#/client/login.
China Hydrogen Alliance Research Institute. Fuel cell vehicle announcement statistics[EB/OL].(2023-03-28)[2024-07-18]. https://www.chinah2data.com/#/client/login.
[6]
中华人民共和国国家发展和改革委员会,国家能源局. 关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL].(2022-01-30) [2024-07-18]. https://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm.
National Development and Reform Commission of the People's Republic of China, National Energy Administration. Opinions on improving the systems, mechanisms, policies and measures for the green and low-carbon energy transition[EB/OL].(2022-01-30)[2024-07-18]. https://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm.
[7]
朱继忠, 何晨可, 陈婧韵, 等. 综合能源系统环境下电动汽车充换电设施规划综述[J]. 南方电网技术, 2022, 16(1): 14-32.
ZHU Jizhong, HE Chenke, CHEN Jingyun, et al. Overview of electric vehicle charging and swapping facilities planning under the environment of integrated energy system[J]. Southern Power System Technology, 2022, 16(1): 14-32.
[8]
胡俊杰, 曲佳桐, 王文浩. 基于模型预测控制的高速公路综合能源微网群分布式能量优化调度方法[J]. 广东电力, 2024, 37(12): 87-96.
HU Junjie, QU Jiatong, WANG Wenhao. Distributed energy optimization scheduling of highway integrated energy microgrid group based on model predictive control[J]. Guangdong Electric Power, 2024, 37(12): 87-96.
[9]
邱忠涛, 韩新阳, 田鑫, 等. 智慧配电网助力现代化基础设施建设的协同需求和典型场景研究[J]. 供用电, 2024, 41(6): 47-54.
QIU Zhongtao, HAN Xinyang, TIAN Xin, et al. Research on collaborative needs and typical scenarios of smart distribution network assisting modern infrastructure construction[J]. Distribution & Utilization, 2024, 41(6): 47-54.
[10]
何克成, 贾宏杰, 穆云飞, 等. 面向交通-电力融合能源系统的建模技术研究综述[J]. 全球能源互联网, 2023, 6(5): 473-489.
HE Kecheng, JIA Hongjie, MU Yunfei, et al. A review of modeling approaches for integrated transportation-power energy systems[J]. Journal of Global Energy Interconnection, 2023, 6(5): 473-489.
[11]
王江涛. 多种形式加氢合建站建设优化与技术研究[J]. 现代化工, 2022, 42(1): 7-12.
摘要
在2021年新颁布的关于加氢站建设的两个重要规范GB 50516-2010(2021版)《加氢站技术规范》和GB 50156-2021《汽车加油加气加氢站技术标准》基础上,结合实际运行合建站存在的问题,提出L-CNG加气加氢、加油加氢、加气加氢、LNG-液氢、充电加氢等不同形式加氢合建站的技术优化和建设方向,并探讨了未来"零碳排放"加氢合建站建设的可能性,为今后加氢站的发展提供可借鉴思路。
WANG Jiangtao. Construction optimization and technical research for various types of combined hydrogen fueling station[J]. Modern Chemical Industry, 2022, 42(1): 7-12.
In 2021,China issues two important specifications for the construction of hydrogen fueling station:"Technical Specification for Hydrogen Fueling Station GB 50516-2010 (version 2021)" and "Technical Specification for Vehicle Oil-Gas-Hydrogen Fueling Station GB 50156-2021".On this basis,combined with the problems existing in the actual construction of combined hydrogen fueling station,this paper puts forward the technical optimization and construction direction for the construction of different types of combined hydrogen fueling station,such as L-CNG gas-hydrogen fueling station,oil-hydrogen fueling station,gas-hydrogen fueling station,LNG-liquid hydrogen fueling station,and power-charging hydrogen-fueling station.The feasibility for construction of "zero carbon emission" hydrogen fueling station in the future is explored,to provide reference ideas for the development of hydrogenation station in the future.
[12]
岳文全, 姚方, 文福拴. 考虑光热电站的电热氢综合能源系统协调优化策略[J]. 分布式能源, 2023, 8(4): 29-39.
YUE Wenquan, YAO Fang, WEN Fushuan. Coordinated optimization strategy for electric-heat-hydrogen integrated energy system considering concentrating solar power[J]. Distributed Energy, 2023, 8(4): 29-39.
[13]
王书征, 单婷婷, 赵洋, 等. 考虑不同制氢方法的高速公路加氢站布局规划[J]. 电力自动化设备, 2024, 44(4): 9-17.
WANG Shuzheng, SHAN Tingting, ZHAO Yang, et al. Layout planning for highway hydrogen refueling stations considering different hydrogen production methods[J]. Electric Power Automation Equipment, 2024, 44(4): 9-17.
[14]
霍天晴, 刘家璇, 李东, 等. 平准化成本的加氢站供氢路径分析比较研究[J]. 西安交通大学学报, 2024, 58(2): 79-90.
HUO Tianqing, LIU Jiaxuan, LI Dong, et al. Analysis and comparison of hydrogen supply paths of hydrogen refueling station based on the levelized cost[J]. Journal of Xi'an Jiaotong University, 2024, 58(2): 79-90.
[15]
邓振宇, 张润之, 张文韬, 等. 风光电解水制氢平准化成本优化空间分析[J]. 广东电力, 2024, 37(7): 22-31.
DENG Zhenyu, ZHANG Runzhi, ZHANG Wentao, et al. Levelized cost optimization space analysis for wind-solar electrolytic water electrolyzing hydrogen generation[J]. Guangdong Electric Power, 2024, 37(7): 22-31.
[16]
闫振靖, 李皓然, 杨欣可, 等. 基于不确定性分析与电价波动的电-氢-热综合能源系统分析[J]. 高压电器, 2024, 60(7): 69-77.
YAN Zhenjing, LI Haoran, YANG Xinke, et al. Analysis of electric-hydrogen-thermal integrated energy system based on uncertainty analysis and electricity tariff fluctuation[J]. High Voltage Apparatus, 2024, 60(7): 69-77.
[17]
李扬. 电动汽车充电需求预测及优化控制策略研究[D]. 北京: 华北电力大学, 2021.
LI Yang. Research on electric vehicle charging demand prediction and optimal control strategy[D]. Beijing: North China Electric Power University, 2021.
[18]
KURTZ J, BRADLEY T, WINKLER E, et al. Predicting demand for hydrogen station fueling[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32298-32310.
[19]
CHEUNG W M. A scenario-based approach to predict energy demand and carbon emission of electric vehicles on the electric grid[J]. Environmental Science and Pollution Research International, 2022, 29(51): 77300-77310.
UK plans to ban the sale of new diesel and petrol cars by 2030 to be replaced by electric vehicles (EVs). The question is, will the UK's electrical grid infrastructure ready for this change? This comparative study investigates the effect of UK green vehicles on the electrical grid and presents a new insight into improving their energy demand and carbon dioxide (CO) emissions to the electrical grid. The results show that even when there is a very high level of market penetration of EVs, the overall effect on annual energy consumption may seem minimal. On the contrary, the effect that EVs may have on the electrical grid is dependent on the time-of-day EVs are being charged. Therefore, this study concludes that measures need to be put in place to control charging times of EVs and this would help restrict the total daily electricity and electrical energy demands. The introduction of EVs reduces the overall CO emissions mainly because a proportion of petrol and diesel cars are replaced by EVs. However, CO emissions can only reduce up to a certain level and this reduction of CO will have less effect due to an increasing number of EVs in the electrical grid. To reduce CO emissions further, the electricity that relies on high-carbon fossil fuels in the electrical grid should be set at the minimum level.© 2022. The Author(s).
[20]
XING Q, CHEN Z, ZHANG Z Q, et al. Urban electric vehicle fast-charging demand forecasting model based on data-driven approach and human decision-making behavior[J]. Energies, 2020, 13(6): 1412.
[21]
陈文颖, 刘蓓迪. 基于粒子群算法的电动汽车有序充放电优化[J]. 山东电力技术, 2023, 50(1): 52-58.
CHEN Wenying, LIU Beidi. Sequential charging and discharging optimization of electric vehicles based on particle swarm optimization[J]. Shandong Electric Power, 2023, 50(1): 52-58.
[22]
沙广林, 刘璐, 马春艳, 等. 考虑车网互动的电动汽车有序充电策略[J]. 供用电, 2023, 40(10): 46-54.
SHA Guanglin, LIU Lu, MA Chunyan, et al. Orderly charging strategy for electric vehicles considering the vehicle-network interaction[J]. Distribution & Utilization, 2023, 40(10): 46-54.
[23]
梁俊鹏, 张高航, 李凤婷, 等. 计及氢储能与需求响应的路域综合能源系统规划方法[J]. 电网技术, 2024, 48(12): 4918-4927.
LIANG Junpeng, ZHANG Gaohang, LI Fengting, et al. Road-domain integrated energy system planning strategy considering hydrogen storage and demand response[J]. Power System Technology, 2024, 48(12): 4918-4927.
[24]
张智禹, 王致杰, 杨皖昊, 等. 基于充电需求预测的电动汽车充电站选址规划研究[J]. 电测与仪表, 2024, 61(10): 39-49.
ZHANG Zhiyu, WANG Zhijie, YANG Wanhao, et al. Research on location planning of electric vehicle charging station based on prediction of charging demand[J]. Electrical Measurement & Instrumentation, 2024, 61(10): 39-49.
[25]
庞松岭, 赵海龙, 张晨佳. 计及充电需求差异的电动汽车充电设施协同优化配置[J]. 电测与仪表, 2024, 61(12): 171-177.
PANG Songling, ZHAO Hailong, ZHANG Chenjia. Collaborative optimization configuration of electric vehicle charging facilities considering differences in charging demand[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 171-177.
[26]
鲍琼, 谭旭, 屈琦凯, 等. 基于用户时空活动与模糊决策的电动汽车充电需求预测[J]. 东南大学学报(自然科学版), 2022, 52(6): 1209-1218.
BAO Qiong, TAN Xu, QU Qikai, et al. Prediction of electric vehicle charging demand based on user space-time activities and fuzzy decision-making[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6): 1209-1218.
[27]
卢纯颢, 周春丽, 林溪桥, 等. 基于车辆行为模拟的加氢站氢负荷概率建模方法[J]. 中国电力, 2024, 57(8): 46-54, 66.
LU Chunhao, ZHOU Chunli, LIN Xiqiao, et al. Probabilistic modeling method of hydrogen load of hydrogen refueling station based on vehicle behavior simulation[J]. Electric Power, 2024, 57(8): 46-54, 66.
[28]
高宇鹏, 常馨月, 薛屹洵, 等. 考虑风光不确定性和动态氢价的新能源加氢站区间优化调度[J]. 电网技术, 2025, 49(2): 572-581.
GAO Yupeng, CHANG Xinyue, XUE Yixun, et al. Interval optimization dispatch for hydrogen refueling station with renewable energy considering wind/PV uncertainty and dynamic hydrogen pricing[J]. Power System Technology, 2025, 49(2): 572-581.
[29]
朱振山, 刘秉庚, 郭磊. 考虑动态氢价机制的综合能源多微网系统分布式优化调度[J]. 电网技术, 2023, 47(12): 5036-5054.
ZHU Zhenshan, LIU Binggeng, GUO Lei. Distributed optimal dispatch of integrated energy multi-microgrid system considering dynamic hydrogen price mechanism[J]. Power System Technology, 2023, 47(12): 5036-5054.
[30]
汪飞, 龚丹丹, 郭慧, 等. 计及动态氢价和不确定性的区域综合能源系统规划-运行两阶段优化[J]. 电力系统保护与控制, 2022, 50(13): 53-62.
WANG Fei, GONG Dandan, GUO Hui, et al. Two-stage optimization of regional integrated energy system planning-operation with dynamic hydrogen pricing and uncertainties[J]. Power System Protection and Control, 2022, 50(13): 53-62.
[31]
周宇凡, 高辉, 龙羿. 计及动态电价的电动汽车定制化充电策略[J]. 电气传动, 2024, 54(7): 32-39.
ZHOU Yufan, GAO Hui, LONG Yi. Customized charging strategy for EV considering dynamic electricity prices[J]. Electric Drive, 2024, 54(7): 32-39.
[32]
夏鑫, 钟浩, 张磊, 等. 计及动态电价的电动汽车参与微电网调度双层优化策略[J]. 电力工程技术, 2024, 43(3): 140-150.
XIA Xin, ZHONG Hao, ZHANG Lei, et al. A two-layer optimization strategy for electric vehicles participating in microgrid scheduling considering dynamic electricity prices[J]. Electric Power Engineering Technology, 2024, 43(3): 140-150.
[33]
邓衍辉, 李剑, 卢国强, 等. 考虑分区域动态电价机制引导的电动汽车充电优化策略[J]. 电力系统保护与控制, 2024, 52(7): 33-44.
DENG Yanhui, LI Jian, LU Guoqiang, et al. Charging optimization strategy of electric vehicles guided by the dynamic tariff mechanism of a subregion[J]. Power System Protection and Control, 2024, 52(7): 33-44.
[34]
侯慧, 何梓姻, 侯婷婷, 等. 大规模车网互动需求响应策略及潜力评估综述[J]. 电力系统保护与控制, 2024, 52(14): 177-187.
HOU Hui, HE Ziyin, HOU Tingting, et al. A review of demand response strategies and potential evaluation for large-scale vehicle to grid[J]. Power System Protection and Control, 2024, 52(14): 177-187.
[35]
刘嘉彦, 李祖坤, 李畅, 等. 电动汽车与电力-交通耦合网互动: 综述与展望[J]. 电力科学与技术学报, 2024, 39(5): 12-24.
LIU Jiayan, LI Zukun, LI Chang, et al. Interaction between electric vehicles and power-transportation coupled networks: current status, challenges and development trends[J]. Journal of Electric Power Science and Technology, 2024, 39(5): 12-24.
[36]
邓润琦, 向月, 黄媛, 等. 交通-配电网耦合下电动汽车集群可调控裕度及优化运行策略[J]. 电网技术, 2021, 45(11): 4328-4337.
DENG Runqi, XIANG Yue, HUANG Yuan, et al. Dispatchable margin and optimal operation strategy of electric vehicle clusters in coupled transportation-distribution network[J]. Power System Technology, 2021, 45(11): 4328-4337.
[37]
孙毅, 胡亚杰, 郑顺林, 等. 考虑用户响应特性的综合需求响应优化激励策略[J]. 中国电机工程学报, 2022, 42(4): 1402-1413.
SUN Yi, HU Yajie, ZHENG Shunlin, et al. Integrated demand response optimization incentive strategy considering users' response characteristics[J]. Proceedings of the CSEE, 2022, 42(4): 1402-1413.
[38]
程杉, 杨堃, 魏昭彬, 等. 计及电价优化和放电节制的电动汽车充电站有序充放电调度[J]. 电力系统保护与控制, 2021, 49(11): 1-8.
CHENG Shan, YANG Kun, WEI Zhaobin, et al. Orderly charging and discharging scheduling of an electric vehicle charging station considering price optimization and discharge behavior control[J]. Power System Protection and Control, 2021, 49(11): 1-8.
[39]
付亚轩, 张丹, 隋朝霞. 中国加氢站商业模式及经济性比较[J]. 油气与新能源, 2022, 34(5): 8-13.
FU Yaxuan, ZHANG Dan, SUI Zhaoxia. Business modes of China's hydrogen refueling stations and the economics comparation[J]. Petroleum and New Energy, 2022, 34(5): 8-13.
[40]
马思瑶, 邱瑞玲, 赵文忠, 等. 氢气液化及输送经济性分析[J]. 当代石油石化, 2024, 32(2): 36-40.
MA Siyao, QIU Ruiling, ZHAO Wenzhong, et al. Economic analysis of hydrogen liquefaction and transportation[J]. Petroleum & Petrochemical Today, 2024, 32(2): 36-40.
[41]
王俊, 王馨, 朱金大, 等. 考虑动态定价的新能源汽车能源站优化运行[J]. 电力系统自动化, 2024, 48(22): 182-190.
WANG Jun, WANG Xin, ZHU Jinda, et al. Optimal operation of renewable-energy vehicle energy stations considering dynamic pricing[J]. Automation of Electric Power Systems, 2024, 48(22): 182-190.

基金

国家自然科学基金项目(72342007)
国家自然科学基金项目(72404023)

编辑: 魏希辉
PDF(2179 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/