融合多方信息的电动汽车充电负荷时空分布预测

王强, 毕宇豪, 高超, 宋铎洋

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 24-37.

PDF(2954 KB)
PDF(2954 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 24-37. DOI: 10.12204/j.issn.1000-7229.2025.06.003
基于人工智能的新能源汽车优化运行与调度关键技术·栏目主持 杨博、姚伟、蒋林、杨强·

融合多方信息的电动汽车充电负荷时空分布预测

作者信息 +

Prediction of Spatiotemporal Distribution of Electric Vehicle Charging Load Based on Multi-Source Information

Author information +
文章历史 +

摘要

【目的】电动汽车(electric vehicle,EV)充电负荷时空分布受路网、温度、电动汽车类型等因素影响。为提高EV充电负荷时空分布预测精度,构建了一种融合多方信息的电动汽车充电负荷时空分布预测模型。【方法】通过引入温度与车速对能耗的影响模型,量化外部环境对电动汽车续航的影响;结合充电需求引力模型,将充电站规模、电价、时间成本等因素类比为引力参数,动态修正用户充电站选择行为。同时,改进Dijkstra算法,融合实时路况信息优化充电路径规划。最后累计叠加得到充电总负荷。【结果】Matlab仿真结果表明,私家车与出租车的充电负荷分布存在显著差异。私家车充电负荷在居民区、工作区及商业区分别集中于夜间、白天工作时间段及下班时,而出租车因运营需求,充电负荷呈现早、晚高峰低谷及午间小高峰的特征;所提改进Dijkstra算法通过动态调整路段权重提高了路径规划效率,在相同目的地情况下,行驶时间降低了3.9%;所提充电需求引力模型综合考虑充电站规模、电价、用户时间成本等因素,优化了用户充电站选择行为,计算得到的充电负荷时空分布更趋合理。【结论】文章通过融合多方信息,构建了电动汽车充电负荷时空分布预测模型,揭示了不同类型EV的充电行为差异、温度敏感性及用户决策动态特性。研究成果可为电网负荷调度、充电站规划及有序充电策略制定提供理论支撑。

Abstract

[Objective] Factors such as road networks, temperature, and electric vehicle (EV) type affect the spatial and temporal distribution of EV charging loads. To improve prediction accuracy, a spatiotemporal EV charging load prediction model is developed by integrating multiparty information. [Methods] By introducing the model of temperature and vehicle speed on energy consumption, the impact of the external environment on EV range is quantified. A charging demand gravity model is also used, incorporating factors such as station size, electricity price, time cost, and gravity parameters. These are used to dynamically adjust user behavior in choosing charging stations. Additionally, the Dijkstra algorithm is improved to plan charging paths more effectively by including real-time road condition data. Finally, the total charging load is accumulated and superimposed. [Results] The MATLAB simulation results showed a significant difference between the charging load distributions of private cars and cabs. The charging loads of private cars in residential, working, and commercial areas are concentrated during nighttime, daytime working hours, and off-duty hours, respectively. In contrast, the charging loads of cabs are characterized by morning and evening peaks, valleys, and small peaks at noon due to operational demand. The proposed improved Dijkstra's algorithm improves the efficiency of path planning by dynamically adjusting road section weights, reducing driving time by 3.9% for the same destination. The proposed charging demand gravity model optimizes users' charging station selection behavior by integrating factors such as charging station size, electricity price, and user time cost, resulting in a more reasonable spatial and temporal distribution of the charging load[Conclusions] This study constructed a spatial and temporal distribution prediction model for electric vehicle charging loads by integrating information from multiple sources. It reveals the differences in the charging behaviors of different types of EVs, their temperature sensitivity, and the dynamic characteristics of user decision-making. The results provide theoretical support for grid load scheduling, charging station planning, and the development of an orderly charging strategy.

关键词

电动汽车 / 充电站 / 充电需求引力模型 / 改进Dijkstra算法 / 充电负荷

Key words

electric vehicle / charging station / gravitational modeling of charging demand / improved Dijkstra algorithm / charging loads

引用本文

导出引用
王强, 毕宇豪, 高超, . 融合多方信息的电动汽车充电负荷时空分布预测[J]. 电力建设. 2025, 46(6): 24-37 https://doi.org/10.12204/j.issn.1000-7229.2025.06.003
WANG Qiang, BI Yuhao, GAO Chao, et al. Prediction of Spatiotemporal Distribution of Electric Vehicle Charging Load Based on Multi-Source Information[J]. Electric Power Construction. 2025, 46(6): 24-37 https://doi.org/10.12204/j.issn.1000-7229.2025.06.003
中图分类号: TM715   

参考文献

[1]
阮前途, 梅生伟, 黄兴德, 等. 低碳城市电网韧性提升挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2819-2830.
RUAN Qiantu, MEI Shengwei, HUANG Xingde, et al. Challenges and research prospects of resilience enhancement of low-carbon power grid[J]. Proceedings of the CSEE, 2022, 42(8): 2819-2830.
[2]
张灿, 张明震. 中国新型公路交通能源综合系统发展对策研究[J]. 南方能源建设, 2024, 11(5): 95-104.
ZHANG Can, ZHANG Mingzhen. Study on development countermeasures of new highway traffic energy integrated system in China[J]. Southern Energy Construction, 2024, 11(5): 95-104.
[3]
周华锋, 胡荣, 聂涌泉, 等. 考虑碳排放的智慧园区配电网协同调度优化策略[J]. 供用电, 2023, 40(10): 73-80.
ZHOU Huafeng, HU Rong, NIE Yongquan, et al. Cooperative scheduling optimization strategy of smart park distribution network considering carbon emission[J]. Distribution & Utilization, 2023, 40(10): 73-80.
[4]
胡文东, 田志杰, 陈嘉瑞, 等. 考虑物流特性用于削峰填谷的纯电重卡双层协调优化调度方法[J]. 全球能源互联网, 2024, 7(4): 421-430.
HU Wendong, TIAN Zhijie, CHEN Jiarui, et al. A two-layer coordinated optimization dispatch method of electric trucks for peak shaving and valley filling considering logistics characteristics[J]. Journal of Global Energy Interconnection, 2024, 7(4): 421-430.
[5]
金梦, 朱鑫要, 周前. 新能源对电网调峰特性影响定量评估及应用[J]. 高压电器, 2023, 59(4): 70-76.
JIN Meng, ZHU Xinyao, ZHOU Qian. Quantitative assessment of influence of renewable energy on peak regulation characteristics of power grid and its application[J]. High Voltage Apparatus, 2023, 59(4): 70-76.
[6]
原凯, 宋毅, 李敬如, 等. 分布式电源与电动汽车接入的谐波特征研究[J]. 中国电机工程学报, 2018, 38(S1): 53-57.
YUAN Kai, SONG Yi, LI Jingru, et al. Harmonic characteristics of distributed generation and electric vehicle supplying access to the grid[J]. Proceedings of the CSEE, 2018, 38(S1): 53-57.
[7]
FOTOUHI Z, HASHEMI M R, NARIMANI H, et al. A general model for EV drivers' charging behavior[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7368-7382.
[8]
李畸勇, 宋子涵, 刘斌. 含垃圾能源化处理及电动汽车负载的区域综合能源系统协调优化[J]. 电测与仪表, 2024, 61(4): 109-115.
LI Jiyong, SONG Zihan, LIU Bin. Coordinated optimization of regional comprehensive energy system with garbage energy treatment and electric vehicle load[J]. Electrical Measurement & Instrumentation, 2024, 61(4): 109-115.
[9]
胡思洋, 杨健维, 廖凯, 等. 计及大规模电动汽车接入的配电网故障分析方法[J]. 电力系统保护与控制, 2022, 50(16): 33-46.
HU Siyang, YANG Jianwei, LIAO Kai, et al. Fault analysis method for an urban distribution network considering large-scale electric vehicle access[J]. Power System Protection and Control, 2022, 50(16): 33-46.
[10]
刘浠流, 陈冠霖, 吴宁, 等. 考虑电动汽车充放电模式灵活性的配电网日前优化调度方法[J]. 分布式能源, 2023, 8(4): 46-54.
LIU Xiliu, CHEN Guanlin, WU Ning, et al. Day-ahead optimal scheduling considering the flexibility of EV charging and discharging modes[J]. Distributed Energy, 2023, 8(4): 46-54.
[11]
盛东旭, 高辉, 龙羿. 居民区场景下计及负荷预测的有序充电策略[J]. 广东电力, 2023, 36(8): 70-78.
SHENG Dongxu, GAO Hui, LONG Yi. Ordered charging strategy considering load forecasting in residential area scenarios[J]. Guangdong Electric Power, 2023, 36(8): 70-78.
[12]
秦建华, 潘崇超, 张璇, 等. 基于充电行为分析的电动汽车充电负荷预测[J]. 电测与仪表, 2023, 60(4): 19-26.
QIN Jianhua, PAN Chongchao, ZHANG Xuan, et al. Charging load forecast of electric vehicle based on analysis of charging behavior[J]. Electrical Measurement & Instrumentation, 2023, 60(4): 19-26.
[13]
DU W Y, MA J, YIN W J. Orderly charging strategy of electric vehicle based on improved PSO algorithm[J]. Energy, 2023, 271: 127088.
[14]
陈文颖, 刘蓓迪. 基于粒子群算法的电动汽车有序充放电优化[J]. 山东电力技术, 2023, 50(1): 52-58.
CHEN Wenying, LIU Beidi. Sequential charging and discharging optimization of electric vehicles based on particle swarm optimization[J]. Shandong Electric Power, 2023, 50(1): 52-58.
[15]
李滨, 韦寿浦, 白晓清, 等. 车网互动充放电站的选址定容规划策略[J]. 电力系统及其自动化学报, 2025, 37(2): 38-47, 57.
LI Bin, WEI Shoupu, BAI Xiaoqing, et al. Location and capacity planning strategy for vehicle-to-grid charging and discharging power stations[J]. Proceedings of the CSU-EPSA, 2025, 37(2): 38-47, 57.
[16]
关俊乐, 高源, 陈方华, 等. 基于面需求法的充电设施分区选址优化[J]. 广东电力, 2024, 37(10): 38-45.
GUAN Junle, GAO Yuan, CHEN Fanghua, et al. Location optimization of charging facilities based on area demand method[J]. Guangdong Electric Power, 2024, 37(10): 38-45.
[17]
TIAN X Q, YANG H, GE Y Y, et al. Site selection and capacity determination of electric hydrogen charging integrated station based on voronoi diagram and particle swarm algorithm[J]. Energies, 2024, 17(2): 418.
[18]
张琳娟, 许长清, 王利利, 等. 基于OD矩阵的电动汽车充电负荷时空分布预测[J]. 电力系统保护与控制, 2021, 49(20): 82-91.
ZHANG Linjuan, XU Changqing, WANG Lili, et al. OD matrix based spatiotemporal distribution of EV charging load prediction[J]. Power System Protection and Control, 2021, 49(20): 82-91.
[19]
LUO Y G, ZHU T, WAN S, et al. Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems[J]. Energy, 2016, 97: 359-368.
[20]
FERRO G, MINCIARDI R, ROBBA M. A user equilibrium model for electric vehicles: joint traffic and energy demand assignment[J]. Energy, 2020, 198: 117299.
[21]
袁晓冬, 甘海庆, 王明深, 等. 车联网环境下电动汽车主动充电引导模型[J]. 电力系统自动化, 2024, 48(7): 159-168.
YUAN Xiaodong, GAN Haiqing, WANG Mingshen, et al. Active charging guidance model of electric vehicles based on Internet of vehicles[J]. Automation of Electric Power Systems, 2024, 48(7): 159-168.
[22]
张晨彧, 丁明, 张晶晶. 基于交通出行矩阵的私家车充电负荷时空分布预测[J]. 电工技术学报, 2017, 32(1): 78-87.
ZHANG Chenyu, DING Ming, ZHANG Jingjing. A temporal and spatial distribution forecasting of private car charging load based on origin-destination matrix[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 78-87.
[23]
陈丽丹, 张尧, Antonio Figueiredo. 融合多源信息的电动汽车充电负荷预测及其对配电网的影响[J]. 电力自动化设备, 2018, 38(12): 1-10.
CHEN Lidan, ZHANG Yao, FIGUEIREDO A. Charging load forecasting of electric vehicles based on multi-source information fusion and its influence on distribution network[J]. Electric Power Automation Equipment, 2018, 38(12): 1-10.
[24]
黄一修, 肖仕武. 考虑气象因素的高速公路服务区电动汽车充电负荷预测[J]. 电力自动化设备, 2025, 45(1): 192-199.
HUANG Yixiu, XIAO Shiwu. Forecasting of electric vehicle charging load in highway service areas considering meteorological factors[J]. Electric Power Automation Equipment, 2025, 45(1): 192-199.
[25]
张琦, 杨健维, 向悦萍, 等. 计及气象因素的区域电动汽车充电负荷建模方法[J]. 电力系统保护与控制, 2022, 50(6): 14-22.
ZHANG Qi, YANG Jianwei, XIANG Yueping, et al. Modeling method of regional electric vehicle charging load considering meteorological factors[J]. Power System Protection and Control, 2022, 50(6): 14-22.
[26]
张美霞, 蔡雅慧, 杨秀, 等. 考虑用户充电差异性的家用电动汽车充电需求分布分析方法[J]. 电力自动化设备, 2020, 40(2): 154-163.
ZHANG Meixia, CAI Yahui, YANG Xiu, et al. Charging demand distribution analysis method of household electric vehicles considering users' charging difference[J]. Electric Power Automation Equipment, 2020, 40(2): 154-163.
[27]
林晓明, 钱斌, 肖勇, 等. 考虑网商车多方需求和决策行为特性的电动汽车有序充电[J]. 电力自动化设备, 2021, 41(3): 136-143.
LIN Xiaoming, QIAN Bin, XIAO Yong, et al. Ordered charging of electric vehicles considering grid-station-user multi-party demands and decision-making behavior characteristics[J]. Electric Power Automation Equipment, 2021, 41(3): 136-143.
[28]
常小强, 宋政湘, 王建华. 基于蒙特卡罗算法的电动汽车充电负荷预测及系统开发[J]. 高压电器, 2020, 56(8): 1-5.
CHANG Xiaoqiang, SONG Zhengxiang, WANG Jianhua. Electric vehicle charging load prediction and system development based on Monte Carlo algorithm[J]. High Voltage Apparatus, 2020, 56(8): 1-5.
[29]
刘珏, 穆云飞, 董晓红, 等. 考虑交通时滞的配电-交通耦合系统协同优化运行策略[J]. 电力系统及其自动化学报, 2024, 36(10): 49-59.
LIU Jue, MU Yunfei, DONG Xiaohong, et al. Collaborative operation strategy for power-traffic coupling system considering traffic delay[J]. Proceedings of the CSU-EPSA, 2024, 36(10): 49-59.
[30]
卢少平, 应黎明, 王霞, 等. 基于用户出行模拟的电动汽车快充站负荷预测及其优化调度[J]. 电力建设, 2020, 41(11): 38-48.
摘要
电动汽车作为一种新型交通工具,其充放电优化问题得到越来越广泛的关注。论文提出一种基于用户出行模拟的电动汽车光储充一体式直流快充站优化调度方案。首先结合用户出行链概念,基于城市道路网络和改进的路阻函数模型,运用实时路径搜索算法和基于模糊理论的用户充电方式选择方法对一天内城市电动汽车充电负荷的时空分布进行预测;然后以预测结果为基础,以用户“充电贴合度”指标最大的原则将区域充电负荷落实到建设在特定节点处的充电站,接着以站内综合运行成本最小为目标,在满足设备功率、用户出行需求和储能电池状态等约束的条件下,构建优化调度模型。最后将优化方案与仅需满足设备功率平衡且电动汽车用户以额定功率随到随充的常规调度方案进行比较,结果显示,论文所提优化调度方案能够较大限度地降低充电站的运行成本,具有推广应用价值。
LU Shaoping, YING Liming, WANG Xia, et al. Charging load prediction and optimized scheduling of electric vehicle quick charging station according to user travel simulation[J]. Electric Power Construction, 2020, 41(11): 38-48.

As a new kind of green means of transportation, electric vehicle has drawn wide attention in the society. This paper presents an optimized scheduling scheme of integrated DC quick charging station for EV according to user travel simulation. Firstly, combining with the concept of user trip-chain, on the basis of the urban road network and the improved road resistance function model, real-time path search algorithm and user charging manner selection method based on fuzzy theory are used to predict the spatial and temporal distribution of charging load of urban EV within a day. Then on the basis of the prediction results, with the principle that the biggest user "charging joint degree" regional charging load will be implemented to construct charging stations in a specific node. In order to minimize the integrated operation cost of the station, the optimal scheduling model is constructed under the constraints of equipment power, user trip demand and battery status. Finally, the optimization scheme is compared with the conventional scheduling scheme that only needs to meet the power balance of the equipment and the EV user needs to charge at rated power on the spot. The results show that the optimized scheduling scheme proposed in this paper can greatly reduce the operating cost of charging stations and has the value of popularization and application.

[31]
陈盛. 城市道路交通流速度流量实用关系模型研究[D]. 南京: 东南大学, 2004.
CHEN Sheng. Study on practical relationship model of urban road traffic flow speed and flow[D]. Nanjing: Southeast University, 2004.
[32]
张美霞, 孙铨杰, 杨秀. 考虑多源信息实时交互和用户后悔心理的电动汽车充电负荷预测[J]. 电网技术, 2022, 46(2): 632-645.
ZHANG Meixia, SUN Quanjie, YANG Xiu. Electric vehicle charging load prediction considering multi-source information real-time interaction and user regret psychology[J]. Power System Technology, 2022, 46(2): 632-645.
[33]
程杉, 钟仕凌, 尚冬冬, 等. 考虑电动汽车时空负荷分布特性的主动配电网动态重构[J]. 电力系统保护与控制, 2022, 50(17): 1-13.
CHENG Shan, ZHONG Shiling, SHANG Dongdong, et al. Dynamic reconfiguration of an active distribution network considering temporal and spatial load distribution characteristics of electric vehicles[J]. Power System Protection and Control, 2022, 50(17): 1-13.
[34]
丁乐言, 柯松, 张帆, 等. 考虑出行需求和引导策略的电动汽车充电负荷预测[J]. 电力建设, 2024, 45(6): 10-26.
摘要
随着电动汽车逐步替代燃料汽车,电动汽车充电负荷对电网造成的影响也越来越大,为此提出了一种考虑出行需求与引导策略的电动汽车充电负荷时空分布预测方法。首先,基于路段通行时间模型建立划分功能区域的半动态交通网模型;进一步,建立电动汽车能耗模型,在分析电价、气候和季节等因素对车主出行需求影响的同时,对充电需求、半动态交通网模型、能耗模型以及传统出行链进行修正;然后,考虑外部因素影响下车主的有限理性,提出引导策略下私家车和出租车充电负荷预测方法;最后,在半动态交通网模型中用改进的出行链和起讫点(origin-destination, OD)矩阵分别模拟私家车和出租车研究时间内的出行行为,通过在划分区域的半动态交通网仿真,验证了所提出的电动汽车充电负荷时空分布预测方法的有效性。仿真结果也表明电动汽车充电负荷时空分布预测情况与对外部影响因素的分析相符,同时提出的引导策略能提升车主决策的满意程度。
DING Leyan, KE Song, ZHANG Fan, et al. Forecasting of electric-vehicle charging load considering travel demand and guidance strategy[J]. Electric Power Construction, 2024, 45(6): 10-26.
 With electric vehicles (EVs) gradually replacing fueled vehicles, the impact of their charging load on the power grid is increasing. Therefore, this study proposes a spatial-temporal distribution prediction method for the charging load of EVs that considers travel demand and a guidance strategy. First, a semi-dynamic traffic network model that divides functional areas was developed based on a road travel time model. Furthermore, an energy-consumption model of EVs was established, and the charging demand, semi-dynamic transportation network model, energy consumption model, and traditional travel chain were revised according to the influence of the electricity price, climate, and season on the travel demand of vehicle owners. Considering the limited rationality of vehicle owners based on the influence of external factors, a charging load prediction method for private cars and taxis based on a guidance strategy is proposed. Finally, the modified trip chain and OD matrix were used to simulate the travel behavior of private cars and taxis, respectively, in the semi-dynamic traffic network model during the study period, and the validity of the proposed prediction method was verified through a simulation experiment of the semi-dynamic traffic network in the divided regions. The results show that the spatial-temporal distribution of the charging load for EVs is consistent with the analysis of external influencing factors, and the proposed guidance strategy can improve the satisfaction of vehicle owners. 
[35]
于梦桐, 高辉, 杨凤坤. 计及电动汽车保有量增长需求的充电负荷预测[J]. 现代电子技术, 2024, 47(6): 55-62.
YU Mengtong, GAO Hui, YANG Fengkun. Charging load forecasting considering growth demand for electric vehicle ownership[J]. Modern Electronics Technique, 2024, 47(6): 55-62.
[36]
郭栋, 李超超, 闫伟, 等. 考虑电动汽车电量补给的最优路径规划方法(英文)[J]. Journal of Central South University, 2022, 29(01): 331-345.
GUO Dong, LI Chaochao, YAN Wei, et al. Optimal path planning method of electric vehicles considering power supply[J]. Journal of Central South University, 2022, 29(1): 331-345.
[37]
李晓辉, 李磊, 刘伟东, 等. 基于动态交通信息的电动汽车充电负荷时空分布预测[J]. 电力系统保护与控制, 2020, 48(1): 117-125.
LI Xiaohui, LI Lei, LIU Weidong, et al. Spatial-temporal distribution prediction of charging load for electric vehicles based on dynamic traffic information[J]. Power System Protection and Control, 2020, 48(1): 117-125.

基金

国家自然科学基金项目(52077120)

编辑: 魏希辉
PDF(2954 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/