新型电力系统需求侧灵活性资源低碳协同优化研究综述

华昊辰, 张洲赫, 邹奕群, 余昆, 甘磊, 陈星莺, 刘迪, 李冰, 张冲标, Pathmanathan Naidoo

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 60-75.

PDF(2061 KB)
PDF(2061 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 60-75. DOI: 10.12204/j.issn.1000-7229.2025.06.006
新型电力系统需求侧灵活性资源状态感知与智能调控理论与方法·栏目主持 刘博、廖思阳、孙英云、赵博超、蒋雯倩、赵瑞锋·

新型电力系统需求侧灵活性资源低碳协同优化研究综述

作者信息 +

Review of Low-Carbon Co-Optimization Research on Demand-Side Flexibility Resources for New Power Systems

Author information +
文章历史 +

摘要

【目的】降低碳排放是应对全球气候变化挑战的关键措施之一。尽管碳排放由能源供应侧直接产生,但需求侧才是驱使供应侧产生碳排放的根源。因此,从需求侧角度出发,通过对需求侧灵活性资源进行调节以实现绿色低碳用能尤为重要。在新型电力系统低碳优化运行过程中,各个设备碳排放的精确计量是评估其优化调节所产生碳减排效益的必要前提,高不确定性资源稳定聚合与边际碳减排效益的准确建模是低碳优化的重要支撑,对经济性和碳减排目标一致性区间变化机理的认知是低碳优化的客观要求,合理的市场运行机制、用户行为模型、价格形成机制是激励海量需求侧灵活性资源主动参与低碳优化的机制保障。【方法】为此,挖掘需求侧的灵活性调节能力,聚焦需求侧资源利用关键技术,从需求侧灵活性资源碳排放计量、灵活性资源聚合与可调节潜力评估、灵活性资源接入的新型电力系统低碳优化运行、灵活性资源参与的电碳耦合市场四个方面回顾现有研究,并指明当前研究存在的不足,展望未来解决这些不足的可能研究方向。【结论】文章为相关研究者提供了一个迅速理解本研究领域重要概念和最新成果的指南,推动需求侧灵活性资源碳排放计量、资源聚合与可调节潜力评估、优化策略及市场机制等方面的创新。

Abstract

[Objective] Reducing carbon emissions is a key measure in addressing the global challenge of climate change. While carbon emissions are generated directly on the energy supply side, demand drives carbon emissions on the supply side, thus making it particularly important to regulate demand-side flexible resources from a demand-side perspective to achieve green and low-carbon energy use. During optimal low-carbon operation of the new power system, accurate measurement of carbon emissions from various devices is a prerequisite for regulatory benefit calculations. Accurate modeling of the stable aggregation of high-uncertainty resources with marginal carbon reduction benefits is crucial for low-carbon optimization. Understanding the change mechanism in a region where the two goals of the economy and carbon emission reduction are consistent is an objective requirement for low-carbon optimization. The reasonable design of the market operation mechanism, user behavior model, and price formation mechanism motivates massive demand-side flexibility resources to actively participate in low-carbon optimization. [Methods] This study explores flexible regulation capabilities on the demand side, focusing on key technologies for utilizing demand-side resources, and reviews existing research from four perspectives: 1) carbon emission measurement of flexible demand-side resources, 2) aggregation and adjustable potential assessment of these resources, 3) low-carbon optimization of new power systems incorporating flexible resources, and 4) participation of flexible resources in electricity-carbon coupled markets. Finally, this study identifies current research gaps and outlines potential future research directions to address these deficiencies. [Conclusions] This study provides readers with a concise guide to quickly grasp the key concepts and latest achievements in this research field, thereby driving innovation in areas such as carbon emission quantification of demand-side flexibility resources, resource aggregation, adjustable-potential assessment, optimization strategies, and market mechanisms.

关键词

新型电力系统 / 需求侧灵活性资源 / 低碳运行 / 碳减排潜力

Key words

new power system / demand side flexibility resources / low carbon operation / carbon reduction potential

引用本文

导出引用
华昊辰, 张洲赫, 邹奕群, . 新型电力系统需求侧灵活性资源低碳协同优化研究综述[J]. 电力建设. 2025, 46(6): 60-75 https://doi.org/10.12204/j.issn.1000-7229.2025.06.006
HUA Haochen, ZHANG Zhouhe, ZOU Yiqun, et al. Review of Low-Carbon Co-Optimization Research on Demand-Side Flexibility Resources for New Power Systems[J]. Electric Power Construction. 2025, 46(6): 60-75 https://doi.org/10.12204/j.issn.1000-7229.2025.06.006
中图分类号: TM711   

参考文献

[1]
舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[2]
程耀华, 张宁, 康重庆, 等. 考虑需求侧管理的低碳电网规划[J]. 电力系统自动化, 2016, 40(23): 61-69.
CHENG Yaohua, ZHANG Ning, KANG Chongqing, et al. Low carbon transmission expansion planning considering demand side management[J]. Automation of Electric Power Systems, 2016, 40(23): 61-69.
[3]
HUA H C, SHI J B, CHEN X Y, et al. Carbon emission flow based energy routing strategy in energy internet[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3974-3985.
[4]
黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI Bo, CHEN Minyou, ZHONG Haiwang, et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[5]
孙毅, 单禹钦, 陈明昊, 等. 考虑生命周期与储能损耗的光-储系统低碳运行优化策略[J/OL]. 电力系统自动化, 2023: 1-16. (2023-10-20)[2024-08-12]. https://kns.cnki.net/kcms/detail/32.1180.TP.20231019.2130.009.html.
SUN Yi, SHAN Yuqin, CHEN Minghao, et al. Optimization strategy of low-carbon operation of optical-storage system considering life cycle and energy storage loss[J/OL]. Automation of Electric Power Systems, 2023: 1-16. (2023-10-20) [2024-08-12]. https://kns.cnki.net/kcms/detail/32.1180.TP.20231019.2130.009.html.
[6]
丛琳, 王冰, 孙毅, 等. 考虑碳排放和需求侧多能源响应的虚拟电厂低碳经济运行策略[J]. 电测与仪表, 2024, 61(11): 12-21, 53.
CONG Lin, WANG Bing, SUN Yi, et al. Low-carbon and economical operation strategy of virtual power plant considering carbon emission and integrated energy response in demand side[J]. Electrical Measurement & Instrumentation, 2024, 61(11): 12-21, 53.
[7]
董联鑫, 范帅, 王治华, 等. 大规模变频空调的可信聚合优化与自适应分散协调方法[J]. 电力系统自动化, 2024, 48(16): 109-122.
DONG Lianxin, FAN Shuai, WANG Zhihua, et al. Credible aggregation optimization and adaptive decentralized coordination method for large-scale inverter air conditioning[J]. Automation of Electric Power Systems, 2024, 48(16): 109-122.
[8]
康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833.
[9]
HUA H C, WU H X, SHEN J, et al. Editorial: Machine learning to support low carbon energy transition[J]. Frontiers in Energy Research, 2023, 11: 1175280.
[10]
王佳, 吴任博, 肖健, 等. 新型电力系统能源调度与碳排放计价优化方法研究[J]. 电测与仪表, 2024, 61(10): 17-25.
WANG Jia, WU Renbo, XIAO Jian, et al. Research on the optimization method of energy dispatching and carbon emission pricing for novel power system[J]. Electrical Measurement & Instrumentation, 2024, 61(10): 17-25.
[11]
华昊辰, 辛世禹, 陈星莺, 等. 基于“虚拟碳储存” 的需求侧电-碳耦合交易机制[J]. 中国电机工程学报, 2024, 44(6): 2131-2144.
HUA Haochen, XIN Shiyu, CHEN Xingying, et al. Demand side electricity-carbon coupling trading mechanism based on “virtual carbon storage”[J]. Proceedings of the CSEE, 2024, 44(6): 2131-2144.
[12]
张宁, 贾焦心, 李博强, 等. 计及碳交易的电-气耦合型虚拟电厂运行策略优化研究[J]. 电测与仪表, 2024, 61(8): 20-28.
ZHANG Ning, JIA Jiaoxin, LI Boqiang, et al. Study on optimization of operation strategy of electric-gas coupling virtual power plant considering carbon trading[J]. Electrical Measurement & Instrumentation, 2024, 61(8): 20-28.
[13]
李怡晨, 李强, 李宏伟, 等. 融合阶梯式碳交易与需求响应的源荷协同优化[J]. 广东电力, 2024, 37(4): 71-79.
LI Yichen, LI Qiang, LI Hongwei, et al. Source-load collaborative optimization combining stepwise carbon trading and demand response[J]. Guangdong Electric Power, 2024, 37(4): 71-79.
[14]
BEHBOODI S, CHASSIN D P, CRAWFORD C, et al. Renewable resources portfolio optimization in the presence of demand response[J]. Applied Energy, 2016, 162: 139-148.
[15]
朱继忠, 周迦琳, 张迪. 清洁能源和电力系统碳足迹全生命周期核算综述[J]. 中国电机工程学报, 2025, 45(4): 1323-1343.
ZHU Jizhong, ZHOU Jialin, ZHANG Di. Review of full life-cycle carbon footprints accounting of clean energy and power systems[J]. Proceedings of the CSEE, 2025, 45(4): 1323-1343.
[16]
刘昱良, 李姚旺, 周春雷, 等. 电力系统碳排放计量与分析方法综述[J]. 中国电机工程学报, 2024, 44(6): 2220-2236.
LIU Yuliang, LI Yaowang, ZHOU Chunlei, et al. Overview of carbon measurement and analysis methods in power systems[J]. Proceedings of the CSEE, 2024, 44(6): 2220-2236.
[17]
江亿, 张吉, 张涛, 等. 电力动态碳排放责任因子[J]. 中国电机工程学报, 2024, 44(17): 7024-7039.
JIANG Yi, ZHANG Ji, ZHANG Tao, et al. Dynamic carbon emission responsibility factor of electricity[J]. Proceedings of the CSEE, 2024, 44(17): 7024-7039.
[18]
易俊, 孙浩然, 林伟芳, 等. 电力系统碳排放核算标准对比分析[J]. 电网技术, 2025, 49(3): 920-933.
YI Jun, SUN Haoran, LIN Weifang, et al. Comparative analysis of carbon emission accounting standards for power systems[J]. Power System Technology, 49(3): 920-933.
[19]
李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842.
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842.
[20]
孙菁阳, 孔祥玉, 陈一, 等. 电力系统全环节碳排放核算方法综述[J/OL]. 电力系统自动化, 2024: 1-14. (2024-04-12). https://kns.cnki.net/kcms/detail/32.1180.TP.20240410.1325.002.html.
SUN Jingyang, KONG Xiangyu, CHEN Yi, et al. Summary of carbon emission accounting methods in all links of power system[J/OL]. Automation of Electric Power Systems, 2024: 1-14. (2024-04-12). https://kns.cnki.net/kcms/detail/32.1180.TP.20240410.1325.002.html.
[21]
陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42(19): 106-111.
CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42(19): 106-111.
[22]
康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41(18): 10-16.
KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41(18): 10-16.
[23]
WANG Y Q, QIU J, TAO Y C, et al. Carbon-oriented operational planning in coupled electricity and emission trading markets[J]. IEEE Transactions on Power Systems, 2020, 35(4): 3145-3157.
[24]
华昊辰, 史珺博, 陈星莺, 等. 基于自适应形状估计多目标进化算法的低碳经济能量路由策略[J]. 中国电机工程学报, 2025, 45(4): 1394-1409.
HUA Haochen, SHI Junbo, CHEN Xingying, et al. Low-carbon economic energy routing strategy via adaptive geometry estimation based multi-objective evolutionary algorithm[J]. Proceedings of the CSEE, 2025, 45(4): 1394-1409.
[25]
曾金灿, 王成围, 杨晨, 等. 基于广义节点碳流理论的区域电网用电碳排放计算方法[J]. 广东电力, 2023, 36(11): 20-28.
ZENG Jincan, WANG Chengwei, YANG Chen, et al. Measurement method of area electricity carbon emission based on generalized nodal carbon emission flow[J]. Guangdong Electric Power, 2023, 36(11): 20-28.
[26]
刘哲远, 邢海军, 程浩忠, 等. 考虑碳排放流及需求响应的综合能源系统双层优化调度[J]. 高电压技术, 2023, 49(1): 169-178.
LIU Zheyuan, XING Haijun, CHENG Haozhong, et al. Bi-level optimal scheduling of integrated energy system considering carbon emission flow and demand response[J]. High Voltage Engineering, 2023, 49(1): 169-178.
[27]
赵伟, 熊正勇, 潘艳, 等. 计及碳排放流的电力系统低碳规划[J]. 电力系统自动化, 2023, 47(9): 23-33.
ZHAO Wei, XIONG Zhengyong, PAN Yan, et al. Low-carbon planning of power system considering carbon emission flow[J]. Automation of Electric Power Systems, 2023, 47(9): 23-33.
[28]
YAN N, MA G C, LI X J, et al. Low-carbon economic dispatch method for integrated energy system considering seasonal carbon flow dynamic balance[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1): 576-586.
[29]
张笑演, 王橹裕, 黄蕾, 等. 考虑扩展碳排放流和碳交易议价模型的园区综合能源优化调度[J]. 电力系统自动化, 2023, 47(9): 34-46.
ZHANG Xiaoyan, WANG Luyu, HUANG Lei, et al. Optimal dispatching of park-level integrated energy system considering augmented carbon emission flow and carbon trading bargain model[J]. Automation of Electric Power Systems, 2023, 47(9): 34-46.
[30]
TAO Y C, QIU J, LAI S Y, et al. Carbon-oriented electricity network planning and transformation[J]. IEEE Transactions on Power Systems, 2021, 36(2): 1034-1048.
[31]
WANG Y Q, QIU J, TAO Y C. Optimal power scheduling using data-driven carbon emission flow modelling for carbon intensity control[J]. IEEE Transactions on Power Systems, 2022, 37(4): 2894-2905.
[32]
WU X P, YANG W, ZHANG N, et al. A distributed computing algorithm for electricity carbon emission flow and carbon emission intensity[J]. Protection and Control of Modern Power Systems, 2024, 9(2): 138-146.
[33]
LU Z L, BAI L Q, WANG J X, et al. Peer-to-peer joint electricity and carbon trading based on carbon-aware distribution locational marginal pricing[J]. IEEE Transactions on Power Systems, 2023, 38(1): 835-852.
[34]
汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46(5): 1683-1693.
WANG Chaoqun, CHEN Yi, WEN Fushuan, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46(5): 1683-1693.
[35]
LI B S, WANG X, SHAHIDEHPOUR M, et al. DER aggregator’s data-driven bidding strategy using the information gap decision theory in a non-cooperative electricity market[C]// 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2020.
[36]
裴振坤, 王学梅, 康龙云. 电动汽车参与电网辅助服务的控制策略综述[J]. 电力系统自动化, 2023, 47(18): 17-32.
PEI Zhenkun, WANG Xuemei, KANG Longyun. Review on control strategies for electric vehicles participating in ancillary services of power grid[J]. Automation of Electric Power Systems, 2023, 47(18): 17-32.
[37]
刘运鑫, 姚良忠, 赵波, 等. 考虑灵活组群的配电网-微电网群低碳经济调度方法[J]. 电力系统自动化, 2024, 48(20): 59-68.
LIU Yunxin, YAO Liangzhong, ZHAO Bo, et al. Low-carbon economic dispatch of distribution network-microgrid clusters considering flexible clustering[J]. Automation of Electric Power Systems, 2024, 48(20): 59-68.
[38]
陈俊先, 贾燕冰, 韩肖清, 等. 考虑需求侧碳交易机制的多微能网分布式协同优化调度[J]. 电网技术, 2023, 47(6): 2196-2207.
CHEN Junxian, JIA Yanbing, HAN Xiaoqing, et al. Distributed coordinated optimal scheduling of multi-micro integrated energy systems considering demand-side carbon trading mechanism[J]. Power System Technology, 2023, 47(6): 2196-2207.
[39]
孙惠娟, 刘昀, 彭春华, 等. 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J]. 电网技术, 2021, 45(9): 3534-3545.
SUN Huijuan, LIU Yun, PENG Chunhua, et al. Optimization scheduling of virtual power plant with carbon capture and waste incineration considering power-to-gas coordination[J]. Power System Technology, 2021, 45(9): 3534-3545.
[40]
王明月, 刘东, 魏力鹏, 等. 电动汽车参与虚拟电厂优化调控的状态推演策略研究[J]. 供用电, 2024, 41(1): 14-25, 41.
WANG Mingyue, LIU Dong, WEI Lipeng, et al. Research on state inference strategies for electric vehicles participating in the optimal regulation of virtual power plants[J]. Distribution & Utilization, 2024, 41(1): 14-25, 41.
[41]
陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054.
CHEN Dengyong, LIU Fang, LIU Shuai. Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46(6): 2042-2054.
[42]
仲悟之, 黄思宇, 崔杨, 等. 考虑源荷不确定性的风电-光热-碳捕集虚拟电厂协调优化调度[J]. 电网技术, 2020, 44(9): 3424-3432.
ZHONG Wuzhi, HUANG Siyu, CUI Yang, et al. W-S-C capture coordination in virtual power plant considering source-load uncertainty[J]. Power System Technology, 2020, 44(9): 3424-3432.
[43]
赵海兵, 张焕云, 葛杨, 等. 细胞-组织认知下的主动配电系统双层多目标控制策略[J]. 电力建设, 2020, 41(5): 81-91.
摘要
近年来,大规模的可再生能源已被广泛集成到电力系统中,配电系统的主导形式也从传统配电网逐渐转变到微网集群。由于风、光等可再生能源具有不确定性,为了优化可再生资源在电力系统中的整合效果,并考虑对微网集群的智能化管理以改善配网运行水平,基于"细胞-组织"结构提出了一种新型双层多目标动态能量管理策略;然后在主动配电系统中将主动配电网和微网集群之间的关系进行了分类,并提出能量博弈矩阵和双层多目标控制策略对主动配电网和微网集群的能量管理进行描述和实现;最后采用分层-带精英策略的快速非支配排序混合遗传算法(hierarchical genetic algorithm-NSGA-Ⅱ, HGA-NSGA-Ⅱ)求解能量管理问题,并通过对基于多微网的混合IEEE-33电力系统的仿真分析,验证了所提控制策略在功耗水平、能源利用率和仿真运算时间等方面上的优势。
ZHAO Haibing, ZHANG Huanyun, GE Yang, et al. Bi-level multi-objective control strategy of active distribution system under the cognition of cell-tissue theory[J]. Electric Power Construction, 2020, 41(5): 81-91.
In recent years, large-scale renewable energy has been widely integrated into the power system, and the dominant form of distribution system has also gradually changed from traditional distribution network to microgrid cluster. To optimize the integration of renewable resource with uncertainty into the power system, considering the intelligent management of microgrid cluster to improve the distribution network performance, this paper proposes a new bi-level multi-objective dynamic energy management strategy based on the cell-tissue theory. The relationship between active distribution network and microgrid cluster are classified, and described by the energy game matrix and bi-level multi-objective control strategy. Finally, this paper adopts the hierarchical genetic algorithm-NSGA-Ⅱ to solve the energy management problem, and verifies the advantages of the proposed control strategy in power consumption, energy efficiency and simulation operation time through the analysis on the IEEE 33-node network based on microgrid cluster.
[44]
陈璐, 杨永标, 徐青山. 基于时变互补特性的聚合空调调控及恢复策略[J]. 电力系统自动化, 2020, 44(13): 39-47.
CHEN Lu, YANG Yongbiao, XU Qingshan. Coordinated control and recovery strategy for aggregated air-conditioner based on time-variant complementary characteristics[J]. Automation of Electric Power Systems, 2020, 44(13): 39-47.
[45]
杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46(2): 699-714.
YANG Xiu, FU Guangnu, LIU Fang, et al. Potential evaluation and control strategy of air conditioning load aggregation response considering multiple factors[J]. Power System Technology, 2022, 46(2): 699-714.
[46]
LIN Y J, LI X, ZHAI B Y, et al. A two-layer frequency control method for large-scale distributed energy storage clusters[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108465.
[47]
KHODADOOST ARANI A A, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International Journal of Electrical Power & Energy Systems, 2019, 107: 745-757.
[48]
李彦君, 裴玮, 肖浩, 等. 基于深度学习的微网需求响应特性封装与配电网优化运行[J]. 电力系统自动化, 2021, 45(10): 157-165.
LI Yanjun, PEI Wei, XIAO Hao, et al. Deep learning based characteristic packaging of demand response for microgrids and optimal operation of distribution network[J]. Automation of Electric Power Systems, 2021, 45(10): 157-165.
[49]
李明轩, 齐步洋, 贺大玮. 工业园区需求响应资源聚合优化配置方法[J]. 电网技术, 2022, 46(9): 3543-3549.
LI Mingxuan, QI Buyang, HE Dawei. Optimization of aggregation of demand response resources in industrial park[J]. Power System Technology, 2022, 46(9): 3543-3549.
[50]
关舒丰, 王旭, 蒋传文, 等. 基于可控负荷响应性能差异的虚拟电厂分类聚合方法及辅助服务市场投标策略研究[J]. 电网技术, 2022, 46(3): 933-944.
GUAN Shufeng, WANG Xu, JIANG Chuanwen, et al. Classification and aggregation of controllable loads based on different responses and optimal bidding strategy of VPP in ancillary market[J]. Power System Technology, 2022, 46(3): 933-944.
[51]
王思远, 吴文传. 灵活性资源聚合参考模型与量化指标体系[J]. 电力系统自动化, 2024, 48(3): 1-9.
WANG Siyuan, WU Wenchuan. Aggregation reference model and quantitative metric system of flexible energy resources[J]. Automation of Electric Power Systems, 2024, 48(3): 1-9.
[52]
樊伟, 李旭东, 王尧, 等. 新型电力系统灵活性资源聚合两阶段调度优化模型[J]. 电力建设, 2023, 44(2): 25-37.
摘要
构建以新能源为主体的新型电力系统是实现碳达峰、碳中和目标的关键驱动力。传统的以可控煤电装机为主导的电源结构,转变为以强不确定性、弱可控的新能源为主体的新型电力系统,将面临着灵活性资源短缺等挑战。以提升新型电力系统灵活性为导向,提出了灵活性资源聚合两阶段调度优化模型。第一阶段模型考虑分时价格型需求响应,以净负荷波动最小为目标平滑负荷曲线;第二阶段模型考虑分段激励型需求响应市场交易机制,融合电化学储能、抽水蓄能、改造火电等灵活性资源,以系统运行成本最小为目标设计最优运行方案。最后,算例结果和场景对比表明,需求响应能够充分挖掘负荷跟随系统调节的互动能力;改造后火电机组能够降低煤耗水平,提高调节能力,加强与系统灵活性需求时空匹配;各类储能积极响应电力系统调峰,促进了新能源消纳。
FAN Wei, LI Xudong, WANG Yao, et al. Two-stage scheduling optimization model of flexible resource aggregation in new power system[J]. Electric Power Construction, 2023, 44(2): 25-37.

The construction of the new power system dominated by new energy is a key driver to achieve the goal of carbon peaking and carbon neutrality. The traditional power supply structure dominated by controllable coal-fired power installations is transformed into a new power system dominated by new energy with strong uncertainty and weak controllability, which will face challenges such as shortage of flexibility resources. In order to improve the flexibility of the new power system, a two-stage scheduling optimization model of flexible resource aggregation is proposed in this paper. The first stage model considers time-of-price demand response, and takes the minimum net load fluctuation as the goal to smooth the load curve. The second stage model considers segmented incentive-based demand-response market trading mechanism, integrates flexibility resources such as electrochemical energy storage, pumped storage, and reformed thermal power, and designs the optimal operation scheme with the objective of minimizing system operation cost. Finally, the calculation result and scenario comparison show that demand response can fully exploit the interactive ability of load following system regulation. The reformed thermal power units can reduce coal consumption level, improve regulation ability, and enhance the spatial and temporal matching with system flexibility demand. Various types of energy storage actively respond to the power system peak regulation. Taking pumped storage power station as an example, the reservoir storage capacity presents the shape of "double peaks and double valleys" in the dispatching cycle.

[53]
HU J Q, CAO J D, CHEN M Z Q, et al. Load following of multiple heterogeneous TCL aggregators by centralized control[J]. IEEE Transactions on Power Systems, 2017, 32(4): 3157-3167.
[54]
文淅宇, 朱继忠, 李盛林, 等. 基于时空协同的多数据中心虚拟电厂低碳经济调度策略[J]. 电力系统自动化, 2024, 48(18): 56-65.
WEN Xiyu, ZHU Jizhong, LI Shenglin, et al. Low-carbon economic dispatching strategy of multi-data center virtual power plant based on spatio-temporal collaboration[J]. Automation of Electric Power Systems, 2024, 48(18): 56-65.
[55]
徐海栋, 丁一凡, 王仁顺, 等. 基于输电网络区域划分的共享储能优化配置[J/OL]. 中国电机工程学报, 2024: 1-18. (2024-06-25)[2024-08-12]. https://kns.cnki.net/kcms/detail/11.2107.tm.20240624.1645.024.html.
XU Haidong, DING Yifan, WANG Renshun, et al. Optimal allocation of shared energy storage based on regional division of transmission network[J/OL]. Proceedings of the CSEE, 2024: 1-18. (2024-06-25) [2024-08-12]. https://kns.cnki.net/kcms/detail/11.2107.tm.20240624.1645.024.html.
[56]
王冬, 王拓, 王旗, 等. 一种面向需求响应资源的模糊聚类算法[J]. 中国电机工程学报, 2018, 38(14): 4056-4063, 4311.
WANG Dong, WANG Tuo, WANG Qi, et al. A fuzzy C-means clustering algorithm for demand-side response resource[J]. Proceedings of the CSEE, 2018, 38(14): 4056-4063, 4311.
[57]
HASSAN A, MIETH R, DEKA D, et al. Stochastic and distributionally robust load ensemble control[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4678-4688.
[58]
欧阳斌, 马瑞, 朱文广, 等. 计及碳减排分摊的配电网分布式储能集群配置方法[J]. 中国电机工程学报, 2024, 44(22):8897-8908.
OUYANG Bin, MA Rui, ZHU Wenguang, et al. Distributed energy storage cluster configuration method of distribution network considering carbon emission reduction allocation[J]. Proceedings of the CSEE, 2024, 44(22):8897-8908.
[59]
FU Y, BAI H, CAI Y X, et al. Optimal configuration method of demand-side flexible resources for enhancing renewable energy integration[J]. Scientific Reports, 2024, 14(1): 7658.
Demand-side flexible load resources, such as Electric Vehicles (EVs) and Air Conditioners (ACs), offer significant potential for enhancing flexibility in the power system, thereby promoting the full integration of renewable energy. To this end, this paper proposes an optimal allocation method for demand-side flexible resources to enhance renewable energy consumption. Firstly, the adjustable flexibility of these resources is modeled based on the generalized energy storage model. Secondly, we generate random scenarios for wind, solar, and load, considering variable correlations based on non-parametric probability predictions of random variables combined with Copula function sampling. Next, we establish the optimal allocation model for demand-side flexible resources, considering the simulated operation of these random scenarios. Finally, we optimize the demand-side resource transformation plan year by year based on the growth trend forecast results of renewable energy installed capacity in Jiangsu Province from 2025 to 2031.© 2024. The Author(s).
[60]
徐天韵, 陈涛, 张鑫, 等. 基于奇诺多面体的虚拟电厂分布式资源广域聚合调控方法[J]. 电力系统自动化, 2024, 48(18): 139-148.
XU Tianyun, CHEN Tao, ZHANG Xin, et al. Zonotope-based wide-area aggregation and regulation method for distributed resources in virtual power plant[J]. Automation of Electric Power Systems, 2024, 48(18): 139-148.
[61]
姜涛, 吴成昊, 李雪, 等. 考虑电动汽车充放电的输配协同能量-灵活性市场出清机制[J]. 电力系统自动化, 2024, 48(7): 210-224.
JIANG Tao, WU Chenghao, LI Xue, et al. Clearing mechanism of energy and flexibility markets with transmission and distribution coordination considering charging and discharging of electric vehicles[J]. Automation of Electric Power Systems, 2024, 48(7): 210-224.
[62]
陈琪臻, 王旭, 蒋传文, 等. 考虑可调能力季节性互补的换充电站参与能量-备用市场运营策略研究[J]. 电网技术, 2025, 49(3): 1056-1069.
CHEN Qizhen, WANG Xu, JIANG Chuanwen, et al. Operational strategy for the participation of battery 202swapping/charging stations in the energy-reserve market considering seasonal complementarity of adjustable capacities[J]. Power System Technology, 2025, 49(3): 1056-1069.
[63]
朱继忠, 董瀚江, 李盛林, 等. 基于分布式新能源集群的微能源网优化调度综述[J]. 中国电机工程学报, 2024, 44(20): 7952-7970.
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of optimal dispatching for the aggregation of micro-energy grids based on distributed new energy[J]. Proceedings of the CSEE, 2024, 44(20): 7952-7970.
[64]
桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.
SANG Bo, ZHANG Tao, LIU Yajie, et al. Energy management system research of multi-microgrid: a review[J]. Proceedings of the CSEE, 2020, 40(10): 3077-3093.
[65]
陈文哲, 孙海顺, 徐瑞林, 等. 电动汽车参与调频服务的云边融合分层调控技术研究[J]. 中国电机工程学报, 2023, 43(3): 914-927.
CHEN Wenzhe, SUN Haishun, XU Ruilin, et al. Cloud-edge collaboration based hierarchical dispatch technology for EV participating in frequency regulation service[J]. Proceedings of the CSEE, 2023, 43(3): 914-927.
[66]
WU X, YAO L J, YU Y W, et al. Heterogeneous aggregation and control modeling for electric vehicles with random charging behaviors[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1): 525-536.
[67]
WEI C Y, XU J, LIAO S Y, et al. Aggregation and scheduling models for electric vehicles in distribution networks considering power fluctuations and load rebound[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2755-2764.
[68]
邢家维, 程艳, 于芃, 等. 基于合作博弈的多园区互联综合能源系统低碳经济调度[J]. 山东电力技术, 2024, 51(5): 19-29.
XING Jiawei, CHENG Yan, YU Peng, et al. Low-carbon economic scheduling of multiple interconnected park-level integrated energy systems based on cooperative game[J]. Shandong Electric Power, 2024, 51(5): 19-29.
[69]
宋阳, 张新鹤, 王磊. 捆绑合作模式下计及综合能源服务商新型项目的低碳调度[J]. 电力建设, 2019, 40(3): 9-16.
摘要
低碳化已成为电力发展的重要目标,利用需求侧资源缓解发电企业减排压力是一种科学经济的低碳化路径。面向综合能源服务商新型项目,引入电力煤耗系数构建了计及电源结构的碳减排量评估模型,并利用节点电力煤耗系数指导下的实时零售电价,建立了计及碳价值的综合能源服务商和柔性负荷项目用户的主从博弈模型。设计了一种捆绑合作机制,将综合能源服务商引入面向区域火电机组的低碳调度中,并将综合能源服务商和电力系统调度进行一体化优化。算例分析了一体化优化在减排和经济方面的定量指标,验证了文章提出的发电企业低碳化路径的可行性。
SONG Yang, ZHANG Xinhe, WANG Lei. Low-carbon dispatching considering new type projects of integrated energy service provider in bundled cooperative mode[J]. Electric Power Construction, 2019, 40(3): 9-16.
Low-carbonization has become an important goal of electric power development. The use of resources on the demand side to ease the pressure on the emission reduction of power generation enterprises is a scientific and economic low-carbon path. For new type projects of integrated energy service provider (IESP), an evaluation model for carbon emission reduction considering power source structure is established by the coal consumption coefficient of electricity (CCCE). A Stackelberg model between IESP and users of flexible projects is implemented by the real-time retail price under the guidance of node CCCE. A bundled cooperation mechanism is designed to introduce IESP into the low-carbon dispatching of regional thermal units and integrated optimization. The quantitative indicators of integrated optimization in emission reduction and economy are analyzed, and the feasibility of low-carbon path for power generation enterprises is verified.
[70]
HUA H C, WEI Z Q, QIN Y C, et al. Review of distributed control and optimization in energy internet: from traditional methods to artificial intelligence‐based methods[J]. IET Cyber‐Physical Systems: Theory & Applications, 2021, 6(2): 63-79.
[71]
HUA H C, QIN Y C, HAO C T, et al. Stochastic optimal control for energy internet: a bottom-up energy management approach[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1788-1797.
[72]
QIN Y C, HUA H C, CAO J W. Stochastic optimal control scheme for battery lifetime extension in islanded microgrid via a novel modeling approach[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4467-4475.
[73]
HU J J, LIU X T, SHAHIDEHPOUR M, et al. Optimal operation of energy hubs with large-scale distributed energy resources for distribution network congestion management[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1755-1765.
[74]
赵日晓, 闫冬, 周翔, 等. 人工智能支撑新型电力系统能源供给及消纳[J]. 全球能源互联网, 2023, 6(2): 186-195.
ZHAO Rixiao, YAN Dong, ZHOU Xiang, et al. Artificial intelligence supports energy supply and consumption in new power system[J]. Journal of Global Energy Interconnection, 2023, 6(2): 186-195.
[75]
HUA H C, QIN Y C, HAO C T, et al. Optimal energy management strategies for energy internet via deep reinforcement learning approach[J]. Applied Energy, 2019, 239: 598-609.
[76]
SHI Q X, LI F X, DONG J, et al. Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience[J]. Applied Energy, 2022, 318: 119245.
[77]
LI W, ZHANG Y W, LU C. The impact on electric power industry under the implementation of national carbon trading market in China: a dynamic CGE analysis[J]. Journal of Cleaner Production, 2018, 200: 511-523.
[78]
LI J M, AI Q, CHEN M Y. Strategic behavior modeling and energy management for electric-thermal-carbon-natural gas integrated energy system considering ancillary service[J]. Energy, 2023, 278: 127745.
[79]
WANG Z Y, ZHANG H J, YIN W H, et al. Equilibrium analysis for prosumer’s participation in joint electricity and carbon markets[J]. Energy Reports, 2023, 9: 1424-1431.
[80]
崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886, 6163.
CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886, 6163.
[81]
崔杨, 邓贵波, 赵钰婷, 等. 考虑源荷低碳特性互补的含风电电力系统经济调度[J]. 中国电机工程学报, 2021, 41(14): 4799-4815.
CUI Yang, DENG Guibo, ZHAO Yuting, et al. Economic dispatch of power system with wind power considering the complementarity of low-carbon characteristics of source side and load side[J]. Proceedings of the CSEE, 2021, 41(14): 4799-4815.
[82]
杨鹏, 唐人, 吴君. 碳流排放追踪下的电力系统源荷多时间尺度节能调度方法[J]. 分布式能源, 2024, 9(2): 81-88.
YANG Peng, TANG Ren, WU Jun. A source-load multi-timescale energy-saving scheduling approach for power systems under carbon flow emission tracking[J]. Distributed Energy, 2024, 9(2): 81-88.
[83]
李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152.
LI Jiang, FAN Yuanzheng, LIU Bo. A source-load low carbon optimization methodology considering carbon responsibility for direct carbon emissions from cement plants[J]. Electric Power, 2025, 58(1): 141-152.
[84]
颜宁, 马广超, 李相俊, 等. 基于季节性碳交易机制的园区综合能源系统低碳经济调度[J]. 中国电机工程学报, 2024, 44(3): 918-932.
YAN Ning, MA Guangchao, LI Xiangjun, et al. Low-carbon economic dispatch of park integrated energy system based on seasonal carbon trading mechanism[J]. Proceedings of the CSEE, 2024, 44(3): 918-932.
[85]
吕思, 卫志农, 马骏超, 等. 基于多目标优化的电力-交通系统协同运行分析[J]. 电力系统自动化, 2022, 46(12): 98-106.
LYU Si, WEI Zhinong, MA Junchao, et al. Analysis on coordinated power-transportation system operation based on multi-objective optimization[J]. Automation of Electric Power Systems, 2022, 46(12): 98-106.
[86]
黄伟, 熊伟鹏, 华亮亮, 等. 基于动态调度优先级的主动配电网多目标优化调度[J]. 电工技术学报, 2018, 33(15): 3486-3498.
HUANG Wei, XIONG Weipeng, HUA Liangliang, et al. Multi-objective optimization dispatch of active distribution network based on dynamic schedule priority[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3486-3498.
[87]
朱健宇, 潘学萍, 王正风, 等. 兼顾碳减排和新能源消纳的火电机组深度调峰与复合储能协调规划[J]. 电力自动化设备, 2024, 44(1): 17-23.
ZHU Jianyu, PAN Xueping, WANG Zhengfeng, et al. Coordinated planning of thermal generator deep peak regulation and composite energy storage considering carbon emission reduction and new energy consumption[J]. Electric Power Automation Equipment, 2024, 44(1): 17-23.
[88]
包诗媛, 雷星雨, 居来提·阿不力孜, 等. 考虑非凸运行特性的多能源系统灵活调节能力刻画与聚合[J]. 电力系统自动化, 2023, 47(15): 55-66.
BAO Shiyuan, LEI Xingyu, JULETI Abliz, et al. Depiction and aggregation for flexible regulation capability of multi-energy system considering nonconvex operation characteristics[J]. Automation of Electric Power Systems, 2023, 47(15): 55-66.
[89]
吴林林, 陈璨, 胡俊杰, 等. 支撑新能源电力系统灵活性需求的用户侧资源应用与关键技术[J]. 电网技术, 2024, 48(4): 1435-1450.
WU Linlin, CHEN Can, HU Junjie, et al. User side resource application and key technologies for flexibility demand of renewable energy power system[J]. Power System Technology, 2024, 48(4): 1435-1450.
[90]
张自东, 邱才明, 张东霞, 等. 基于深度强化学习的微电网复合储能协调控制方法[J]. 电网技术, 2019, 43(6): 1914-1921.
ZHANG Zidong, QIU Caiming, ZHANG Dongxia, et al. A coordinated control method for hybrid energy storage system in microgrid based on deep reinforcement learning[J]. Power System Technology, 2019, 43(6): 1914-1921.
[91]
HUA H C, QIN Z M, DONG N Q, et al. Data-driven dynamical control for bottom-up energy internet system[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 315-327.
[92]
巨云涛, 陈希. 基于双层多智能体强化学习的微网群分布式有功无功协调优化调度[J]. 中国电机工程学报, 2022, 42(23): 8534-8548.
JU Yuntao, CHEN Xi. Distributed active and reactive power coordinated optimal scheduling of networked microgrids based on two-layer multi-agent reinforcement learning[J]. Proceedings of the CSEE, 2022, 42(23): 8534-8548.
[93]
李运鸿, 徐潇源, 严正. 基于生成对抗网络的独立微电网光-储容量分布鲁棒优化配置[J]. 电力系统自动化, 2023, 47(7): 51-62.
LI Yunhong, XU Xiaoyuan, YAN Zheng. Distributionally robust optimal allocation for capacity distribution of photovoltaic and energy storage units in standalone microgrid based on generative adversarial network[J]. Automation of Electric Power Systems, 2023, 47(7): 51-62.
[94]
武梦景, 万灿, 宋永华, 等. 含多能微网群的区域电热综合能源系统分层自治优化调度[J]. 电力系统自动化, 2021, 45(12): 20-29.
WU Mengjing, WAN Can, SONG Yonghua, et al. Hierarchical autonomous optimal dispatching of district integrated heating and power system with multi-energy microgrids[J]. Automation of Electric Power Systems, 2021, 45(12): 20-29.
[95]
丁曦, 张笑演, 王胜寒, 等. 双碳目标下考虑最优建设时序的区域综合能源系统低碳规划[J]. 高电压技术, 2022, 48(7): 2584-2596.
DING Xi, ZHANG Xiaoyan, WANG Shenghan, et al. Low-carbon planning of regional integrated energy system considering optimal construction timing under dual carbon goals[J]. High Voltage Engineering, 2022, 48(7): 2584-2596.
[96]
江训谱, 吕施霖, 王健, 等. 考虑阶梯碳交易和最优建设时序的园区综合能源系统规划[J]. 电测与仪表, 2023, 60(12): 11-19.
JIANG Xunpu, LV Shilin, WANG Jian, et al. Park-level integrated energy system planning considering tiered carbon trading and optimal construction timing[J]. Electrical Measurement & Instrumentation, 2023, 60(12): 11-19.
[97]
王磊, 胡国, 吴海, 等. 基于分层深度强化学习的分布式能源系统多能协同优化方法[J]. 电力系统自动化, 2024, 48(1): 67-76.
WANG Lei, HU Guo, WU Hai, et al. Multi-energy collaborative optimization method for distributed energy systems based on hierarchical deep reinforcement learning[J]. Automation of Electric Power Systems, 2024, 48(1): 67-76.
[98]
宋莉, 刘敦楠, 庞博, 等. 需求侧资源参与电力市场机制及典型案例实践综述[J]. 全球能源互联网, 2021, 4(4): 401-410.
SONG Li, LIU Dunnan, PANG Bo, et al. Mechanism of demand-side resource participation in the electricity market and typical case practice review[J]. Journal of Global Energy Interconnection, 2021, 4(4): 401-410.
[99]
詹祥澎, 杨军, 韩思宁, 等. 考虑电动汽车可调度潜力的充电站两阶段市场投标策略[J]. 电力系统自动化, 2021, 45(10): 86-96.
ZHAN Xiangpeng, YANG Jun, HAN Sining, et al. Two-stage market bidding strategy of charging station considering schedulable potential capacity of electric vehicle[J]. Automation of Electric Power Systems, 2021, 45(10): 86-96.
[100]
CAO Y M, KANG Z Q, BAI J D, et al. How to build an efficient blue carbon trading market in China?- A study based on evolutionary game theory[J]. Journal of Cleaner Production, 2022, 367: 132867.
[101]
RUSTICO E, DIMITROV S. Environmental taxation: The impact of carbon tax policy commitment on technology choice and social welfare[J]. International Journal of Production Economics, 2022, 243: 108328.
[102]
孔祥玉, 刘超, 陈宋宋, 等. 考虑动态过程的可调资源集群多时间节点响应潜力评估方法[J]. 电力系统自动化, 2022, 46(18): 55-64.
KONG Xiangyu, LIU Chao, CHEN Songsong, et al. Assessment method for multi-time-node response potential of adjustable resource cluster considering dynamic process[J]. Automation of Electric Power Systems, 2022, 46(18): 55-64.
[103]
李建林, 梁策, 张则栋, 等. 新型电力系统下储能政策及商业模式分析[J]. 高压电器, 2023, 59(7): 104-116.
LI Jianlin, LIANG Ce, ZHANG Zedong, et al. Analysis of energy storage policies and business models in new power system[J]. High Voltage Apparatus, 2023, 59(7): 104-116.
[104]
姜婷玉, 鞠平, 王冲. 考虑用户调节行为随机性的空调负荷聚合功率模型[J]. 电力系统自动化, 2020, 44(3): 105-113.
JIANG Tingyu, JU Ping, WANG Chong. Aggregated power model of air-conditioning load considering stochastic adjustment behaviors of consumers[J]. Automation of Electric Power Systems, 2020, 44(3): 105-113.
[105]
李祥光, 谭青博, 李帆琪, 等. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125.
LI Xiangguang, TAN Qingbo, LI Fanqi, et al. Analysis model to study the influence of electrocarbon coupling on settlement price of coal power units in spot market[J]. Electric Power, 2024, 57(5): 113-125.
[106]
苏彦冰, 周明, 武昭原, 等. 基于外部性理论的网侧储能成本疏导机制研究[J]. 电网技术, 2024, 48(1): 110-122.
SU Yanbing, ZHOU Ming, WU Zhaoyuan, et al. Externality theory-based cost sharing mechanism of grid side energy storage[J]. Power System Technology, 2024, 48(1): 110-122.
[107]
吉斌, 孙绘, 梁肖, 等. 面向“双碳” 目标的碳电市场融合交易探讨[J]. 华电技术, 2021, 43(6): 33-40.
JI Bin, SUN Hui, LIANG Xiao, et al. Discussion on convergent trading of the carbon and electricity market on the path to carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6): 33-40.
[108]
吉斌, 刘妍, 朱丽叶, 等. 基于联盟区块链的电力碳权交易机制设计[J]. 华电技术, 2020, 42(8): 32-40.
JI Bin, LIU Yan, ZHU Liye, et al. Design of carbon emission permit trading mechanism in power industrybased on consortium blockchain[J]. Huadian Technology, 2020, 42(8): 32-40.
[109]
李彬, 覃秋悦, 祁兵, 等. 基于区块链的分布式能源交易方案设计综述[J]. 电网技术, 2019, 43(3): 961-972.
LI Bin, QIN Qiuyue, QI Bing, et al. Design of distributed energy trading scheme based on blockchain[J]. Power System Technology, 2019, 43(3): 961-972.
[110]
DANG C, ZHANG J F, KWONG C P, et al. Demand side load management for big industrial energy users under blockchain-based peer-to-peer electricity market[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6426-6435.
[111]
ZHOU K L, CHONG J, LU X H, et al. Credit-based peer-to-peer electricity trading in energy blockchain environment[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 678-687.
[112]
林永, 赵佳晶, 胡思哲, 等. 基于区块链的微电网智能结算机制[J]. 电工技术, 2022(19): 24-26, 30.
LIN Yong, ZHAO Jiajing, HU Sizhe, et al. Smart settlement mechanism of microgrid based on block chain[J]. Electric Engineering, 2022(19): 24-26, 30.
[113]
王冰钰, 颜拥, 文福拴, 等. 基于区块链的分布式电力交易机制[J]. 电力建设, 2019, 40(12): 3-10.
摘要
随着光伏(photovoltaic,PV)发电的大力发展和上网补贴的逐步下调,就近消纳的优势得以显现,这促进了分布式发电的市场化交易 (market trading for distributed generation, MTDG)。MTDG的发、用电双方都在电网末端,具有参与主体数量大、单笔交易规模小、点对点等特点。传统的中心化交易模式存在透明度低、成本高、效率低下、数据不可信等问题,不适合MTDG。区块链技术具有去中心化、不可篡改、匿名等特点,满足MTDG的需要,能够提升这种交易的安全性、自主性、透明性等。在此背景下,文章将区块链技术引入MTDG,针对MTDG的特点,构建了相应的交易机制、结算机制和奖惩机制。最后,采用算例对所发展的MTDG机制进行了说明。
WANG Bingyu, YAN Yong, WEN Fushuan, et al. A blockchain based distributed power trading mechanism[J]. Electric Power Construction, 2019, 40(12): 3-10.
With the rapid development of photovoltaic (PV) power generation and the gradual downward subsidies, the advantages of satisfying load demand by local generation supply are becoming more and more significant, and market trading for distributed generation (MTDG) is then promoted. In MTDG, both power generation and load demand are located at the end of the utility grid, with some features exhibited including numerous participating entities, small transaction sizes, and point-to-point transactions. The traditional centralized transaction model suffers some problems such as low transparency, high cost, low efficiency, and untrustworthy data, and is not suitable for MTDG. Blockchain technology has the characteristics of decentralization, non-tampering, and anonymity, and can well meet the needs of MTDG for improved security, autonomy and transparency of electricity transactions. Given this background, the blockchain technology is applied in MTDG, and the corresponding trading mechanism, settlement mechanism and reward and punishment mechanism are developed considering the characteristics of MTDG. Finally, an example is employed to demonstrate the developed MTDG mechanism.
[114]
SHEN W, QIU J, MENG K, et al. Low-carbon electricity network transition considering retirement of aging coal generators[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4193-4205.
[115]
车清宇, 迟博. 数据挖掘技术应用于电力营销系统的研究[J]. 电气技术与经济, 2023(9): 234-236.
CHE Qingyu, CHI Bo. Research on the application of data mining technology in power marketing system[J]. Electrical Equipment and Economy, 2023(9): 234-236.
[116]
林其友, 陈星莺, 王之伟. 数据挖掘技术在电价预测中的应用[J]. 电网技术, 2006, 30(23): 83-87.
LIN Qiyou, CHEN Xingying, WANG Zhiwei. Application of data mining in electricity price forecasting[J]. Power System Technology, 2006, 30(23): 83-87.
[117]
翁格平, 崔林宁, 江涵, 等. 考虑碳排放影响的长期发电投资决策方法研究[J/OL]. 中国电力, 2024: 1-10. (2024-06-07)[2024-08-12]. https://kns.cnki.net/kcms/detail/11.3265.tm.20240606.1544.002.html.
WENG Geping, CUI Linning, JIANG Han, et al. Study on decision-making method of long-term power generation investment considering the influence of carbon emissions[J/OL]. Electric Power, 2024: 1-10. (2024-06-07) [2024-08-12]. https://kns.cnki.net/kcms/detail/11.3265.tm.20240606.1544.002.html.
[118]
NEKOUEI E, ALPCAN T, CHATTOPADHYAY D. Game-theoretic frameworks for demand response in electricity markets[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 748-758.
[119]
王永婷, 胡林, 潘迪, 等. 储能技术在电力市场中的价值评估与激励机制设计[J]. 电气技术与经济, 2024(5): 232-234.
WANG Yongting, HU Lin, PAN Di, et al. Value evaluation and incentive mechanism design of energy storage technology in power market[J]. Electrical Equipment and Economy, 2024(5): 232-234.
[120]
谢青洋, 应黎明, 祝勇刚. 基于经济机制设计理论的电力市场竞争机制设计[J]. 中国电机工程学报, 2014, 34(10): 1709-1716.
XIE Qingyang, YING Liming, ZHU Yonggang. Competitive power market mechanism design based on the designing economic mechanisms theory[J]. Proceedings of the CSEE, 2014, 34(10): 1709-1716.
[121]
肖白, 崔涵淇, 姜卓, 等. 基于有限理性用户选择行为的定制化电价套餐设计[J]. 电网技术, 2021, 45(3): 1050-1058.
XIAO Bai, CUI Hanqi, JIANG Zhuo, et al. Customized electricity price package design based on limited rational user selection behavior[J]. Power System Technology, 2021, 45(3): 1050-1058.

基金

国家重点研发计划项目(2022YFE0140600)

编辑: 张小飞
PDF(2061 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/