基于故障元件动态辨识的输电网远后备保护配合逻辑优化

林湘宁, 冀吉豪, 丁一凡, 李正天, 翁汉琍

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 134-149.

PDF(1621 KB)
PDF(1621 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 134-149. DOI: 10.12204/j.issn.1000-7229.2025.06.011
智能电网

基于故障元件动态辨识的输电网远后备保护配合逻辑优化

作者信息 +

Optimization of Remote Backup Protection Coordination Logic Based on Dynamic Identification of Faulty Components in Transmission Grids

Author information +
文章历史 +

摘要

【目的】高比例新能源发电接入导致电网故障电流幅值降低、方向性改变,传统后备保护的离线整定难以适应环网复杂工况,且新能源低惯量与低电压穿越(low voltage ride through,LVRT)控制加剧了正/负序网络特性变化,故障元件辨识困难,引发保护失配或延时过长。文章旨在解决含新能源电网后备保护的动态适应性问题,突破环网死锁与定值僵化瓶颈。【方法】提出基于广域量测的双判据,针对不对称故障,利用负序电压/电流排序锁定故障关联母线及支路,通过区域集中式架构实现快速辨识;针对对称故障,依托变电站单台行波监测设备,结合全局行波到达时间差异与双端测距算法,实现微秒级故障定位。进一步优化后备保护逻辑,仅对故障线路关联远后备保护进行动态整定,调整阻抗圆范围,并将动作延时固化为2个时间级差,规避传统逐级配合的延时累积。【结果】PSCAD仿真结果表明,不对称故障下负序判据准确率达100%,过渡电阻30 Ω时仍能可靠辨识;对称故障行波测距误差小于100 m,定位时间较传统方法缩短90%;优化后远后备动作延时由4~7个时间级差降至2个,定值覆盖范围提升18.4%,有效避免负荷入侵误动。【结论】所提方法通过负序排序与行波时差判据互补,实现新能源电网多类型故障元件的快速动态辨识,突破环网死锁限制。动态整定策略使远后备保护动作延时大幅缩短,灵敏性与速动性显著提升,且无需依赖高采样设备或复杂通信架构,为高比例新能源电网后备保护在线整定提供了高效、可靠的工程化解决方案。

Abstract

[Objective] The integration of a high proportion of renewable energy generation has reduced the amplitude of fault currents and changes in their directionality in power grids. Traditional backup protection that relies on offline settings struggles to adapt to the complex conditions of looped networks. Additionally, the low-inertia and low-voltage ride-through (LVRT) control of renewable energy sources exacerbates the changes in the characteristics of positive- and negative-sequence networks, making it difficult to identify faulty components and often resulting in protection mismatch or excessive delay. This study addresses the dynamic adaptability of backup protection in power grids with renewable energy, overcoming the bottlenecks of looped network deadlocks and rigid setting values. [Methods] A dual-criteria approach based on wide-area measurements is proposed. For asymmetrical faults, negative-sequence voltage/current ranking is used to identify fault-associated buses and branches, enabling rapid identification through a regional centralized architecture. For symmetrical faults, a single traveling wave monitoring device at the substation, combined with the global traveling wave arrival time difference and a double-ended ranging algorithm, is utilized to achieve microsecond-level fault location identification. The backup-protection logic is further optimized by dynamically setting only the remote backup protection associated with the fault line, adjusting the impedance circle range, and fixing the action delay to two time intervals, thereby avoiding the cumulative delays of traditional step-by-step coordination. [Results] The PSCAD simulation results indicate that the accuracy rate of the negative-sequence criterion for asymmetrical faults was 100%, with reliable identification possible with a transition resistance of 30 Ω. For symmetrical faults, the traveling wave ranging error is less than 100 m, and the location time is reduced by 90% compared with traditional methods. After optimization, the remote backup-action delay was reduced from 4-7 intervals to 2 intervals, while the setting coverage increased by 18.4%, effectively avoiding misoperations owing to load intrusion. [Conclusions] The proposed method achieved rapid and dynamic identification of multiple types of fault components in renewable energy grids through the complementary use of negative sequence ranking and traveling wave time-difference criteria, overcoming the limitations of looped network deadlocks. The dynamic setting strategy significantly shortens the action delay of remote backup protection, thus considerably enhancing sensitivity and speed. Moreover, this strategy does not rely on high-sampling equipment or complex communication architectures, thus providing an efficient and reliable engineering solution for online backup protection in power grids with a high proportion of renewable energy.

关键词

故障元件动态辨识 / 广域量测 / 负序电压/电流排序 / 全局行波到达时刻差异性 / 远后备保护 / 在线整定

Key words

dynamic identification of faulty components / wide-area measurement / negative-sequence voltage/current sorting / global arrival time difference of traveling waves / remote backup protection / online setting

引用本文

导出引用
林湘宁, 冀吉豪, 丁一凡, . 基于故障元件动态辨识的输电网远后备保护配合逻辑优化[J]. 电力建设. 2025, 46(6): 134-149 https://doi.org/10.12204/j.issn.1000-7229.2025.06.011
LIN Xiangning, JI Jihao, DING Yifan, et al. Optimization of Remote Backup Protection Coordination Logic Based on Dynamic Identification of Faulty Components in Transmission Grids[J]. Electric Power Construction. 2025, 46(6): 134-149 https://doi.org/10.12204/j.issn.1000-7229.2025.06.011
中图分类号: TM771   

参考文献

[1]
李怀强, 高露, 粟小华, 等. 基于非最严苛电网运行方式的超高压线路距离保护整定方法[J]. 电力系统保护与控制, 2020, 48(21): 166-172.
LI Huaiqiang, GAO Lu, SU Xiaohua, et al. A distance protection relay coordination method for EHV transmission lines based on non most severe grid operation mode[J]. Power System Protection and Control, 2020, 48(21): 166-172.
[2]
周锦丽, 吕艳萍. 距离保护第Ⅱ段整定新原则研究[J]. 电力系统及其自动化学报, 2007, 19(1): 104-107.
ZHOU Jinli, LV Yanping. Study on new approach for calculating zone-2 setting of distance protection[J]. Proceedings of the CSU-EPSA, 2007, 19(1): 104-107.
[3]
徐岩, 韩平. 防止距离Ⅲ段保护因过负荷误动方法的分析与改进[J]. 电力系统保护与控制, 2015, 43(7): 1-7.
XU Yan, HAN Ping. Analysis and improvement for the scheme to prevent zone Ⅲ distance protection from incorrect operation caused by non-fault overload[J]. Power System Protection and Control, 2015, 43(7): 1-7.
[4]
张保会, 郝治国. 智能电网继电保护研究的进展(一): 故障甄别新原理[J]. 电力自动化设备, 2010, 30(1): 1-6.
ZHANG Baohui, HAO Zhiguo. Development of relay protection for smart grid(1): new principles of fault distinction[J]. Electric Power Automation Equipment, 2010, 30(1): 1-6.
[5]
陈新, 吕飞鹏, 蒋科, 等. 基于多代理技术的智能电网继电保护在线整定系统[J]. 电力系统保护与控制, 2010, 38(18): 167-173.
CHEN Xin, Feipeng, JIANG Ke, et al. Protective relaying on-line coordination and calculation system of smart grid based on MAS[J]. Power System Protection and Control, 2010, 38(18): 167-173.
[6]
曾耿晖, 李银红, 段献忠. 电力系统继电保护定值的在线校核[J]. 继电器, 2002, 30(1): 22-24.
ZENG Genghui, LI Yinhong, DUAN Xianzhong. A discussion about on-line verifying of relay setting in power system[J]. Relay, 2002, 30(1): 22-24.
[7]
王惠中, 陈辉. 基于MAS的自适应协调保护系统的研究[J]. 电气自动化, 2013, 35(6): 66-67, 86.
WANG Huizhong, CHEN Hui. Research on an adaptive coordination protection system based on MAS[J]. Electrical Automation, 2013, 35(6): 66-67, 86.
[8]
庄红山, 王晓飞, 冯小萍, 等. 基于过电流保护的闭环配网继电保护定值在线校核[J]. 自动化技术与应用, 2019, 38(1): 102-106.
ZHUANG Hongshan, WANG Xiaofei, FENG Xiaoping, et al. Online verification of the protection relay settings in closed loop distribution network based on the overcurrent relays[J]. Techniques of Automation and Applications, 2019, 38(1): 102-106.
[9]
张武洋, 李籽良, 李永照, 等. 一种电网等值分解及短路计算新方法[J]. 电力系统保护与控制, 2020, 48(14): 43-49.
ZHANG Wuyang, LI Ziliang, LI Yongzhao, et al. A new method of power grid equivalent decomposition and short-circuit calculation[J]. Power System Protection and Control, 2020, 48(14): 43-49.
[10]
赵宇, 王慧芳, 王晓保, 等. 基于增量因子的后备保护在线整定方法[J]. 电网技术, 2014, 38(1): 269-275.
ZHAO Yu, WANG Huifang, WANG Xiaobao, et al. Increment factors based online setting for backup protection[J]. Power System Technology, 2014, 38(1): 269-275.
[11]
王子江, 张兆毅, 樊友平, 等. 基于近似熵变化量判据的混合直流输电系统纵联保护方案[J]. 电力系统保护与控制, 2024, 52(21): 1-12.
WANG Zijiang, ZHANG Zhaoyi, FAN Youping, et al. A pilot protection scheme for a hybrid HVDC transmission system based on an approximate entropy change criterion[J]. Power System Protection and Control, 2024, 52(21): 1-12.
[12]
赵妍, 张森禹, 黄艳祖, 等. 基于改进深度残差网络的柔性直流配电线路故障辨识[J]. 智慧电力, 2024, 52(9): 72-79.
ZHAO Yan, ZHANG Senyu, HUANG Yanzu, et al. Fault identification for flexible DC distribution line based on improved deep residual network[J]. Smart Power, 2024, 52(9): 72-79.
[13]
段献忠, 杨增力, 程逍. 继电保护在线整定和离线整定的定值性能比较[J]. 电力系统自动化, 2005, 29(19): 58-61.
DUAN Xianzhong, YANG Zengli, CHENG Xiao. Performance analysis of relay settings determined according to off-line calculation and on-line calculation[J]. Automation of Electric Power Systems, 2005, 29(19): 58-61.
[14]
程小平. 配合系数与网络结构关系的研究[J]. 电力系统自动化, 2000, 24(9): 52-55.
CHENG Xiaoping. Study on relation between network topology and cooperation coefficient[J]. Automation of Electric Power Systems, 2000, 24(9): 52-55.
[15]
曾耿晖, 刘玮. 继电保护在线整定系统的探讨[J]. 继电器, 2004, 32(17): 38-42.
ZENG Genghui, LIU Wei. Discussion about on-line coordination systems of relay protection in power system[J]. Relay, 2004, 32(17): 38-42.
[16]
NANAYAKKARA O M K K, RAJAPAKSE A D, WACHAL R. Traveling-wave-based line fault location in star-connected multiterminal HVDC systems[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2286-2294.
[17]
贾科, 赵其娟, 冯涛, 等. 柔性直流配电系统高频突变量距离保护[J]. 电工技术学报, 2020, 35(2): 383-394.
JIA Ke, ZHAO Qijuan, FENG Tao, et al. High-frequency fault component distance protection for flexible DC distribution system[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 383-394.
[18]
王聪博, 贾科, 赵其娟, 等. 基于故障全电流相关性检验的柔性直流配电线路纵联保护[J]. 电工技术学报, 2020, 35(8): 1764-1775.
WANG Congbo, JIA Ke, ZHAO Qijuan, et al. Pilot protection for flexible-DC distribution line based on correlation test of DC current[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1764-1775.
[19]
周嘉阳, 李凤婷, 刘渊, 等. 基于直流电抗电压的柔性直流配电网故障测距方法[J]. 电力系统保护与控制, 2018, 46(19): 95-101.
ZHOU Jiayang, LI Fengting, LIU Yuan, et al. A fault location method for flexible DC distribution network based on DC reactor voltage[J]. Power System Protection and Control, 2018, 46(19): 95-101.
[20]
YANG Q Q, LI J W, LE BLOND S, et al. Artificial neural network based fault detection and fault location in the DC microgrid[J]. Energy Procedia, 2016, 103: 129-134.
[21]
赵启, 王建, 林丰恺, 等. 基于格拉姆角场与ResNet的输电线路故障辨识方法[J]. 电力系统保护与控制, 2024, 52(10): 95-104.
ZHAO Qi, WANG Jian, LIN Fengkai, et al. Transmission line fault identification method based on Gramian angular field and ResNet[J]. Power System Protection and Control, 2024, 52(10): 95-104.
[22]
黄见虹, 翟博龙, 宋福海, 等. 基于故障时刻自同步的波形比较式多端配电网快速保护方案[J]. 智慧电力, 2024, 52(2): 79-86, 100.
HUANG Jianhong, ZHAI Bolong, SONG Fuhai, et al. Waveform comparison-based fast protection scheme for multi-terminal distribution network based on self-synchronization with fault moments[J]. Smart Power, 2024, 52(2): 79-86, 100.
[23]
李海锋, 许灿雄, 梁远升, 等. 计及换流站控制响应的多端混合直流线路后备保护设计[J]. 电力系统保护与控制, 2023, 51(3): 155-163.
LI Haifeng, XU Canxiong, LIANG Yuansheng, et al. Backup protection design for multi-terminal hybrid HVDC lines considering control response[J]. Power System Protection and Control, 2023, 51(3): 155-163.
[24]
王英涛. 广域测量系统及其应用[D]. 北京: 中国电力科学研究院, 2003.
WANG Yingtao. Wide-area measurement system and its application[D]. Beijing: China Electric Power Research Institute, 2003.
[25]
马丽萍. 基于广域测量系统的后备保护在线校验[D]. 北京: 华北电力大学, 2011.
MA Liping. On-line verification of backup protection based on wide area measurement system[D]. Beijing: North China Electric Power University, 2011.
[26]
李会新, 陈祥文, 金明亮, 等. 常规直流逆变站交流送出线路距离保护适应性分析与对策[J]. 中国电力, 2024, 57(2): 115-126.
LI Huixin, CHEN Xiangwen, JIN Mingliang, et al. Adaptability analysis and countermeasures for distance protection of AC transmission lines connected LCC-HVDC inverter station[J]. Electric Power, 2024, 57(2): 115-126.
[27]
余江, 高宏慧, 史泽兵, 等. 继电保护远程运维系统报文合规检测及入侵阻断技术应用[J]. 中国电力, 2024, 57(3): 135-143, 151.
YU Jiang, GAO Honghui, SHI Zebing, et al. Application of message compliance detection and intrusion blocking technology in remote operation and maintenance system of relay protection[J]. Electric Power, 2024, 57(3): 135-143, 151.
[28]
刘建勋, 李凤婷, 解超, 等. 工频变化量距离保护在交直流混联系统中的动作特性分析及改进措施[J]. 电力科学与技术学报, 2023, 38(1): 88-96.
LIU Jianxun, LI Fengting, XIE Chao, et al. Action characteristic analysis and improvement measures of the distance protection using power frequency variable components in AC/DC hybrid system[J]. Journal of Electric Power Science and Technology, 2023, 38(1): 88-96.
[29]
朱雪凌, 王振亚, 辛自立, 等. 分布式电源对配电网三段式电流保护的影响[J]. 华北水利水电学院学报, 2013, 34(6): 106-109.
ZHU Xueling, WANG Zhenya, XIN Zili, et al. Effects of distributed generator on three-section current protection of distribution network[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2013, 34(6): 106-109.
[30]
胡勇, 郑黎明, 贾科, 等. 基于Tanimoto相似度的光伏场站送出线路纵联保护[J]. 电力系统保护与控制, 2021, 49(3): 74-79.
HU Yong, ZHENG Liming, JIA Ke, et al. Pilot protection based on Tanimoto similarity for a photovoltaic station transmission line[J]. Power System Protection and Control, 2021, 49(3): 74-79.
[31]
顾本硕, 林湘宁, 李正天, 等. 基于负序量排序及5G通信的主动配电网有界面保护原理[J]. 电力系统保护与控制, 2024, 52(18): 12-23.
GU Benshuo, LIN Xiangning, LI Zhengtian, et al. The principle of bounded area-protection for an active distribution network based on negative sequence quantity sorting and 5G communication[J]. Power System Protection and Control, 2024, 52(18): 12-23.
[32]
曾懿辉, 舒应军, 麦俊佳, 等. 基于ARM模型的交流微电网故障北斗定位方法[J]. 电网与清洁能源, 2023, 39(4): 99-104.
ZENG Yihui, SHU Yingjun, MAI Junjia, et al. A Beidou fault location method for AC microgrids based on arm model[J]. Power System and Clean Energy, 2023, 39(4): 99-104.
[33]
吴忠洋, 韩永霞, 黄军杰, 等. 多级多分支配电线路雷击故障定位方法[J]. 电网技术, 2024, 48(11): 4796-4805.
WU Zhongyang, HAN Yongxia, HUANG Junjie, et al. A method for locating lightning strike faults in multi-level and multi-branch distribution lines[J]. Power System Technology, 2024, 48(11): 4796-4805.
[34]
曾祥君, 尹项根, 林福昌, 等. 基于行波传感器的输电线路故障定位方法研究[J]. 中国电机工程学报, 2002, 22(6): 42-46.
ZENG Xiangjun, YIN Xianggen, LIN Fuchang, et al. Study on fault location for transmission lines based on the sensor of traveling-wave[J]. Proceedings of the CSEE, 2002, 22(6): 42-46.
[35]
张保会, 尹项根. 电力系统继电保护[M]. 北京: 中国电力出版社, 2005.
[36]
和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506-5516.
HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506-5516.
[37]
凌谢津, 李银红. 基于生成对抗网络的后备保护在线整定快速计算方案[J]. 中国电机工程学报, 2021, 41(13): 4439-4450.
LING Xiejin, LI Yinhong. Quick calculation scheme of backup protection online setting based on generative adversarial networks[J]. Proceedings of the CSEE, 2021, 41(13): 4439-4450.
[38]
乐全明, 郁惟镛, 肖燕, 等. 一种计算环网方向保护配合最小断点集的实用算法[J]. 电力系统自动化, 2004, 28(7): 71-74.
YUE Quanming, YU Weiyong, XIAO Yan, et al. A practical algorithm to determination minimum break point set for option coordination of directional protective relaying in multiloop networks[J]. Automation of Electric Power Systems, 2004, 28(7): 71-74.

基金

国家自然科学基金项目(U22B20106)

编辑: 张小飞
PDF(1621 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/