基于标签技术的MMC-UPFC电容电压减频效应与抑制策略

王楚扬, 张梦杰, 赵云龙, 邹玉婷, 张犁

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 150-164.

PDF(2539 KB)
PDF(2539 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 150-164. DOI: 10.12204/j.issn.1000-7229.2025.06.012
智能电网

基于标签技术的MMC-UPFC电容电压减频效应与抑制策略

作者信息 +

Frequency-Decrease Effect and Inhibitory Strategies for Capacitor Voltage in MMC-UPFCs Based on Tagging Technology

Author information +
文章历史 +

摘要

【目的】为解决基于模块化多电平换流器(modular multilevel converter, MMC)的统一潮流控制器(unified power flow controller, UPFC)在低开关频率下子模块电容电压减频效应及其抑制导致的系统开关损耗和谐波性能恶化问题,提出了一种基于画像标签技术的减频效应抑制与电容电压均衡优化策略。【方法】所提策略首先构建了基于MMC-UPFC多维数据资源的标签体系,结合评价标签与优化取值确定最佳载波比标签值;其次,提出基于标签技术反馈调节的电容电压均衡优化策略,依据电容电压不均衡度标签聚类范围,在电容电压不均衡度较高时选择接入均压控制器。【结果】仿真实验结果表明:1)当载波比取值为2+1/N时,电容电压不均衡度稳定在1.6%左右,而取值为2.5时不均衡度超过3%且持续上升;2)基于标签技术反馈调节的电容电压均衡优化策略中,当均压控制器有选择接入时,桥臂电容电压不均衡度可稳定在0.7%,显著优于传统全时均压策略;3)在载波比取值为2.4时,非全时均压策略能够有效抑制电容电压波动,使交流电流总谐波畸变率(total harmonic distortion, THD)从全时均压策略的12.61%降低至0.11%。【结论】所提出的基于画像标签技术的减频效应抑制与电容电压均衡优化策略具有良好的应用效果,解决了MMC-UPFC系统在低载波比下的谐波抑制和电容电压均衡问题,为MMC-UPFC系统的优化运行提供了理论支持。

Abstract

[Objective] In this study, we aim to address the submodule capacitor voltage frequency reduction effects and the resulting deterioration in system switching losses and harmonic performance in modular multilevel converter (MMC)-based unified power flow controllers (UPFCs) under low switching frequencies, frequency reduction suppression, and capacitor voltage balancing optimization strategy based on profiling tag technology. [Methods] The proposed strategy first involves constructing a tag system based on the multidimensional data resources of the MMC-UPFC and determining the optimal frequency ratio tag value by combining evaluation tags and optimized parameters. Subsequently, we propose a capacitor voltage-balancing optimization strategy based on tag technology feedback regulation, which selectively activates the voltage-balancing controller when the capacitor voltage imbalance degree exceeds a certain threshold, as determined by the clustering range of the imbalance degree tags. [Results] Simulation results indicate the following: 1) when the frequency ratio is set to 2+1/N, the capacitor voltage imbalance degree stabilizes around 1.6%, whereas it exceeds 3% and continues to rise when the frequency ratio is 2.5; 2) in the capacitor voltage balancing optimization strategy based on tag technology feedback regulation, the bridge arm capacitor voltage imbalance degree can stabilize at 0.7% when the voltage balancing controller is selectively activated, significantly outperforming traditional full-time voltage balancing strategies; 3) at a frequency ratio of RF=2.4, the non-full-time voltage balancing strategy effectively suppresses capacitor voltage fluctuations, reducing the total harmonic distortion (THD) of the AC current from 12.61% under the full-time voltage balancing strategy to 0.11%. [Conclusions] The proposed frequency reduction suppression and capacitor voltage balancing optimization strategy based on profiling tag technology demonstrates excellent performance, addresses the issues of harmonic suppression and capacitor voltage balancing in MMC-UPFC systems under low frequency ratios, and provides theoretical support for the optimized operation of MMC-UPFC systems.

关键词

模块化多电平换流器(MMC) / 统一潮流控制器(UPFC) / 标签技术 / 载波比 / 减频效应 / 电容电压均衡 / 评价标签

Key words

modular multilevel converter (MMC) / unified power flow controller (UPFC) / tagging technology / modulation frequency ratio / frequency reduction effect / capacitive voltage balancing / evaluation tag

引用本文

导出引用
王楚扬, 张梦杰, 赵云龙, . 基于标签技术的MMC-UPFC电容电压减频效应与抑制策略[J]. 电力建设. 2025, 46(6): 150-164 https://doi.org/10.12204/j.issn.1000-7229.2025.06.012
WANG Chuyang, ZHANG Mengjie, ZHAO Yunlong, et al. Frequency-Decrease Effect and Inhibitory Strategies for Capacitor Voltage in MMC-UPFCs Based on Tagging Technology[J]. Electric Power Construction. 2025, 46(6): 150-164 https://doi.org/10.12204/j.issn.1000-7229.2025.06.012
中图分类号: TM46   

参考文献

[1]
SONG Y H, JOHNS A T. Flexible ac transmission systems (FACTS)[M]. London: IEEE Power Series, 2008.
[2]
谢小荣, 姜齐荣. 柔性交流输电系统的原理与应用[M]. 2版. 北京: 清华大学出版社, 2014.
[3]
Kalyan K Sen, Mey Ling Sen. 柔性交流输电系统控制器:原理、 模型与应用[M]. 程新功,宗西举译. 北京: 机械工业出版社, 2016.
[4]
李群, 张宁宇, 王新宝, 等. 电力潮流灵活控制技术应用综述[J]. 电力工程技术, 2023, 42(1): 50-60.
LI Qun, ZHANG Ningyu, WANG Xinbao, et al. Review on application of flexible power flow control technology[J]. Electric Power Engineering Technology, 2023, 42(1): 50-60.
[5]
杨景刚, 刘洋, 刘瑞煌, 等. 基于模块化多电平换流器的多端口谐振型电力电子变压器[J]. 电力系统自动化, 2020, 44(13): 123-134.
YANG Jinggang, LIU Yang, LIU Ruihuang, et al. Multi-port resonant power electronic transformer based on modular multilevel converter[J]. Automation of Electric Power Systems, 2020, 44(13): 123-134.
[6]
夏长江, 韩民晓, 耿治, 等. MMC子模块故障后线电压恢复容错控制策略[J]. 电力工程技术, 2021, 40(4): 2-9.
XIA Changjiang, HAN Minxiao, GENG Zhi, et al. Fault-tolerant control strategy of line voltage recovery after MMC sub-modules fault[J]. Electric Power Engineering Technology, 2021, 40(4): 2-9.
[7]
赵长枢, 邱晓燕, 赵有林, 等. 泛在电力物联网框架下的新型UPFC系统[J]. 电力建设, 2020, 41(1): 39-44.
摘要
基于提出的建设泛在电力物联网的号召,利用统一潮流控制器(unified power flow controller, UPFC)实现物理层面上多条线路的紧密联系。由多个换流器串联接入到多条输电线路上,另外多个并联换流器连接到其他多个网络中,形成一个由换流器作为媒介的大型电力系统输电框架。在连接众多换流器的直流线路上,由储能电池作为有功功率支撑并联接入,共同组成泛在电力物联网框架下的新型UPFC系统。对新型UPFC系统进行数学建模,以对可再生能源的最大消纳能力和有功功率传输的最小成本为目标函数,用遗传算法进行求解。通过算例仿真验证了新型UPFC系统在增强有功功率传输极限、减少有功功率传输成本等方面的优越性。
ZHAO Changshu, QIU Xiaoyan, ZHAO Youlin, et al. A new UPFC system in the framework of ubiquitous power Internet of Things[J]. Electric Power Construction, 2020, 41(1): 39-44.
In building ubiquitous power Internet of things, the unified power flow controller (UPFC) may be used to realize the close connection of multiple lines on the physical level. A large-scale power system transmission framework is formed by connecting multiple converters in series to multiple transmission lines, and connecting multiple parallel converters to other multiple networks. On the DC lines connecting many converters, the energy storage battery is connected in parallel as the active power support to form a new UPFC system under the framework of the power internet of things. The mathematical model of the new UPFC system is established, and the objective function is the maximum capacity of renewable energy accommodation and the minimum cost of active power transmission. The advantages of the new UPFC system in enhancing the transmission limit of active power and reducing the transmission cost of active power are verified by numerical simulation.
[8]
凌卫家, 孙维真, 张静, 等. 舟山多端柔性直流输电示范工程典型运行方式分析[J]. 电网技术. 2016, 40(6): 1751-1758.
LING Weijia, SUN Weizhen, ZHANG Jing, et al. Analysis of typical operating modes of Zhoushan multi-terminal VSC-HVDC pilot project[J]. Power System Technology. 2016, 40(6): 1751-1758.
[9]
刘道兵, 鲍妙生, 李世春, 等. 不平衡电网下MMC的PCHD模型无源滑模控制策略[J]. 中国电力, 2023, 56(8): 109-116.
LIU Daobing, BAO Miaosheng, LI Shichun, et al. Passive sliding mode control strategy for PCHD model of MMC in unbalanced power grid[J]. Electric Power, 2023, 56(8): 109-116.
[10]
蔡晖, 祁万春, 黄俊辉, 等. 统一潮流控制器在南京西环网的应用[J]. 电力建设, 2015, 36(8): 73-78.
摘要
首先介绍了统一潮流控制器(unified power flow controller,UPFC)在国内外理论研究和工程应用的发展和现状。接着具体阐述了南京西环网在发展中存在的输电通道能力不足、潮流分布不均等问题。通过与常规解决措施的对比,阐明了在南京西环网中应用UPFC提高电网输电能力及稳定性的可行性、必要性和必然性。经分析计算发现,通过应用UPFC,不仅能够有效控制电网潮流,提高现有电网的输电能力,从而避免投资巨大、实施难度极大的城市电缆输电通道建设,而且还能够很好地适应未来电网网架的变化。因此,在南京西环网甚至将来的江苏电网中,应用UPFC可以显著提高电网的输电能力、利用效率及运行安全性,能够取得良好的经济效益和社会效益。
CAI Hui, QI Wanchun, HUANG Junhui, et al. Application of UPFC in Nanjing western power system[J]. Electric Power Construction, 2015, 36(8): 73-78.

Firstly, the development and present situation of theoretical study and engineering application of the unified power flow controller (UPFC) at home and abroad were introduced. Then, the constraints in developing Nanjing Western grid were described in detail, such as limited transfer capacities of power imported channels, unbalanced power flow distributions and so on. Through the comparison with other convention solutions, the feasibility, necessity and inevitability of UPFC applied in Nanjing Western grid to improve the systems reliability and transfer capacity were investigated. Through the analysis and calculation, it is found that the application of UPFC not only can effectively control power flow, enhance the transfer capacity of the existing power grid, which can avoid constructing city-crossed cable channel with huge investment and difficult construction; but also can be well adapted to the changes of power grid frame in the future. Therefore, the application of UPFC in Nanjing Western grid or even Jiangsu grid in the future can prominently improve the transfer capacity, utilization efficiency and running security of power grid, which can achieve good economic and social benefits.

[11]
LI P, LIN J J, KONG X P, et al. Application of MMC-UPFC and its performance analysis in Nanjing western grid[C]// 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2016: 2601-2605.
[12]
CUI Y, YU Y H, BAO W, et al. Analysis of application effect of 220 kV UPFC demonstration project in Shanghai grid[J]. The Journal of Engineering, 2019, 2019(16): 758-762.
[13]
杨林, 蔡晖, 汪惟源, 等. 500 kV统一潮流控制器在苏州南部电网的工程应用[J]. 中国电力, 2018, 51(2): 47-53.
YANG Lin, CAI Hui, WANG Weiyuan, et al. Application of 500 kV UPFC in Suzhou southern power grid[J]. Electric Power, 2018, 51(2): 47-53.
[14]
LI M, LIN Z S, WU W, et al. Application of UPFC in Fujian 500 kV power grid[J]. The Journal of Engineering, 2019, 2019(16): 2510-2513.
[15]
程启明, 陈颖, 程尹曼, 等. 基于MMC的统一潮流控制器反演滑模控制策略[J]. 智慧电力, 2023, 51(6): 41-48.
CHENG Qiming, CHEN Ying, CHENG Yinman, et al. Backstepping sliding mode control strategy for unified power flow controller based on MMC[J]. Smart Power, 2023, 51(6): 41-48.
[16]
徐佳, 杨树德, 张新闻. 基于并网电流谐波反馈的有源阻尼策略[J]. 中国电力, 2023, 56(8): 126-135.
XU Jia, YANG Shude, ZHANG Xinwen. Current-harmonic-based active damping strategy[J]. Electric Power, 2023, 56(8): 126-135.
[17]
KOTSAMPOPOULOS P, GEORGILAKIS P, LAGOS D T, et al. FACTS providing grid services: applications and testing[J]. Energies, 2019, 12(13): 2554.
[18]
高本锋, 王晓, 梁纪峰, 等. 混合型统一潮流控制器抑制风电次同步振荡控制策略[J]. 电力建设, 2021, 42(9): 53-64.
摘要
混合型统一潮流控制器(hybrid unified power flow controller,HUPFC)可以实现统一潮流控制器(unified power flow controller,UPFC)与移相变压器(‘Sen’ transformer,ST)的优势互补,广泛应用于系统潮流控制之中。但是,尚未有文献开展HUPFC抑制系统次同步振荡(sub-synchronous oscillation,SSO)的研究。针对双馈风机(double-fed induction generator,DFIG)经串补输电系统存在的SSO问题,提出一种HUPFC附加有源电阻控制(supplementary active resistance control,SARC)策略。首先,阐述了HUPFC的原理及其SSO抑制机理。然后,设计了SARC策略,该策略通过实时跟踪线路中的次同步电流信号,使HUPFC向输电线路叠加一个与次同步电流信号相位相同、幅值可变的次同步电压,进而实现系统等效正电阻,达到抑制SSO的目的。最后,给出了SARC的参数设计方法,在PSCAD/EMTDC仿真环境中,以华北某风电场为仿真算例,采用频率扫描与时域仿真相结合的方法,验证了所提HUPFC的SARC策略抑制双馈风机经串补输电系统SSO的有效性。
GAO Benfeng, WANG Xiao, LIANG Jifeng, et al. Control strategy of hybrid unified power flow controller to suppress wind power sub-synchronous oscillation[J]. Electric Power Construction, 2021, 42(9): 53-64.

The hybrid unified power flow controller (HUPFC) combines the advantages of unified power flow controller (UPFC) and ‘Sen’ transformer (ST), so HUPFC is widely applied in power flow control of the power system. However, little literature has studied the application of HUPFC to suppress sub-synchronous oscillation (SSO). To solve the problem of SSO in double-fed induction generator (DFIG) based wind farm connected to series compensated transmission system, a suppression strategy is proposed in the paper on the basis of the supplementary active resistance control (SARC) of HUPFC. Firstly, the principle of HUPFC and the suppression mechanism for SSO are introduced. Then, the SARC strategy is designed. By tracking sub-synchronous current in the transmission line, the SARC strategy makes HUPFC inject a sub-synchronous voltage which has the same phase as the sub-synchronous current and variable amplitude to the grid. Thereby, the system equivalent resistance is increased to a positive value to suppress SSO. Finally, the parameters design method of SARC is introduced and a detailed simulation model is carried out in PSCAD/EMTDC using the data of an actual wind farm in North China. The results of the frequency scanning and the time domain simulation both show that the proposed SARC strategy of HUPFC can effectively suppress SSO in DFIG-based wind farm connected to series compensated transmission system.

[19]
刘盛松, 周挺, 张宁宇, 等. 考虑静态电压稳定裕度的含UPFC最优潮流计算方法研究[J]. 电力工程技术, 2019, 38(1): 62-66.
LIU Shengsong, ZHOU Ting, ZHANG Ningyu, et al. Optimal power flows with UPFC and minimum voltage stability constraint[J]. Electric Power Engineering Technology, 2019, 38(1): 62-66.
[20]
陈静, 赵涛, 徐友, 等. 一种量化误差可控的少子模块MMC混合调制策略[J]. 电力科学与技术学报, 2023, 38(3): 105-113.
CHEN Jing, ZHAO Tao, XU You, et al. A hybrid modulation strategy for MMC with controllable quantization error[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 105-113.
[21]
BEHROUZIAN E, BONGIORNO M, TEODORESCU R. Impact of switching harmonics on capacitor cells balancing in phase-shifted PWM-based cascaded H-bridge STATCOM[J]. IEEE Transactions on Power Electronics, 2016, 32(1): 815-824.
[22]
ILVES K, HARNEFORS L, NORRGA S, et al. Analysis and operation of modular multilevel converters with phase-shifted carrier PWM[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 268-283.
[23]
叶海峰, 罗颖婷, 许海林, 等. 基于画像的变压器精细化管控策略研究[J]. 微型电脑应用, 2019, 35(2): 67-69, 95.
YE Haifeng, LUO Yingting, XU Hailin, et al. Research on transformer differentiating operation and maintenance strategies based on profiling[J]. Microcomputer Applications, 2019, 35(2): 67-69, 95.
[24]
龚钦耀. 基于数据标签化的变电站设备画像构建与应用分析[J]. 电工技术, 2020(1): 95-96, 100.
GONG Qinyao. Construction and application analysis of substation equipment portrait based on data labeling[J]. Electric Engineering, 2020(1): 95-96, 100.
[25]
马洁, 刘超, 朱淞嵩, 等. 基于多维数据的变电设备状态画像分析技术研究[J]. 自动化应用, 2020(12): 93-96.
MA Jie, LIU Chao, ZHU Songsong, et al. Research on image analysis technology of substation equipment status based on multidimensional data[J]. Automation Application, 2020(12): 93-96.
[26]
孙浩, 徐友, 赵涛, 等. 储能型MMC低频均压混合控制策略[J]. 智慧电力, 2024, 52(5): 8-15.
SUN Hao, XU You, ZHAO Tao, et al. Energy storage MMC low-frequency equalization hybrid control strategy[J]. Smart Power, 2024, 52(5): 8-15.
[27]
许建中, 赵成勇. 模块化多电平换流器电容电压优化平衡控制算法[J]. 电网技术, 2012, 36(6): 256-261.
XU Jianzhong, ZHAO Chengyong. An optimized capacitance voltage balancing algorithm for modularized multilevel converter[J]. Power System Technology, 2012, 36(6): 256-261.
[28]
赵昕, 赵成勇, 李广凯, 等. 采用载波移相技术的模块化多电平换流器电容电压平衡控制[J]. 中国电机工程学报, 2011, 31(21): 48-55.
ZHAO Xin, ZHAO Chengyong, LI Guangkai, et al. Submodule capacitance voltage balancing of modular multilevel converter based on carrier phase shifted SPWM technique[J]. Proceedings of the CSEE, 2011, 31(21): 48-55.
[29]
李笑倩, 宋强, 刘文华, 等. 采用载波移相调制的模块化多电平换流器电容电压平衡控制[J]. 中国电机工程学报, 2012, 32(9): 49-55, 9.
LI Xiaoqian, SONG Qiang, LIU Wenhua, et al. Capacitor voltage balancing control by using carrier phase-shift modulation of modular multilevel converters[J]. Proceedings of the CSEE, 2012, 32(9): 49-55, 9.
[30]
王慧茹, 陈卓, 刘人志, 等. 基于载波移相的MMC改进均压控制策略[J]. 电力科学与工程, 2022, 38(8): 39-46.
摘要
针对子模块数较少的模块化多电平换流器(MMC)电容电压不均衡的问题,以中压配电网下的MMC电力电子变压器的输入级为研究对象,在基于载波移相的传统电容电压均衡控制策略的基础上提出了一种改进的均压控制策略——引入桥臂电容电压平均值前馈控制,使参考电压信号更接近桥臂电容电压的平均值。在MATLAB/SIMULINK平台上搭建了17电平模块化多电平整流器模型,进行了稳态和动态仿真实验。实验结果表明,与传统均压策略相比,所提出的策略有更好的均压效果,并且具有良好的稳定性。
WANG Huiru, CHEN Zhuo, LIU Renzhi, et al. Improved voltage equalization control strategy for MMC based on carrier phase shift[J]. Electric Power Science and Engineering, 2022, 38(8): 39-46.
Aiming at the problem of capacitor voltage imbalance in modular multilevel converter with fewer sub-modules, taking the input stage of MMC power electronic transformer under medium voltage distribution network as the research object, an improved voltage equalization control strategy was proposed on the basis of the traditional capacitor voltage equalization control strategy based on carrier phase shift. The bridge arm capacitor voltage average feedward control is introduced to the strategy in order to make the reference voltage signal closer to the mean value of the bridge arm capacitor voltage. A 17-level modular multilevel rectifier model was built on MATLAB/SIMULINK platform, then the steady-state and dynamic simulation experiments were carried out. The experiment results show that the proposed strategy has a better voltage equalization effect and better stability than the traditional voltage equalization strategy.
[31]
方辉, 周敬森, 王皓正, 等. 基于谐波状态空间的MMC背靠背直流输电系统阻抗建模及稳定性分析[J]. 智慧电力, 2023, 51(3): 87-95.
FANG Hui, ZHOU Jingsen, WANG Haozheng, et al. Impedance modeling and stability analysis of MMC based back-to-back HVDC transmission system based on harmonic state space[J]. Smart Power, 2023, 51(3): 87-95.
[32]
阳同光, 沈兵. 模块化多电平换流器IGBT模块失效机理和状态监测研究综述[J]. 电力系统保护与控制, 2023, 51(4): 174-187.
YANG Tongguang, SHEN Bing. Review of failure mechanism and state monitoring technology for modular multilevel converter IGBT modules[J]. Power System Protection and Control, 2023, 51(4): 174-187.
[33]
杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45.
YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56(4): 38-45.
[34]
王仁武, 张文慧. 学术用户画像的行为与兴趣标签构建与应用[J]. 现代情报, 2019, 39(9): 54-63.
摘要
[目的/意义]学术用户画像是对用户访问使用学术资源行为的较全面的刻画。本文尝试构建图书馆学术用户画像的信息行为标签和研究兴趣标签,来准确定位学术用户的信息需求,以便推荐合适的学术资源。[方法/过程]具体方法是全面获取用户的访问日志并进行清洗处理,然后构建从学术用户信息行为出发的用户画像标签体系,进一步研究构建了基于研究兴趣关联的信息资源推荐服务。[结果/结论]本研究有助于提高用户信息获取效率,提高图书馆学术资源推荐服务的质量,并为结合其它资源全面构建图书馆学术用户画像提供一定的借鉴。
WANG Renwu, ZHANG Wenhui. Behavior and interest labeling construction and application of academic user portraits[J]. Journal of Modern Information, 2019, 39(9): 54-63.
[35]
赵永柱, 马霁讴, 张可心. 基于电力资产全寿命周期的标签画像技术研究[J]. 电网与清洁能源, 2018, 34(1): 51-58.
ZHAO Yongzhu, MA Jiou, ZHANG Kexin. Researchonthe label portrait technology basedon life cycleof electricity assets[J]. Power System and Clean Energy, 2018, 34(1): 51-58.
[36]
SAKELLARIOU G, GOUNARIS A. Homomorphically encrypted k-means on cloud-hosted servers with low client-side load[J]. Computing, 2019, 101(12): 1813-1836.
[37]
徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017.
[38]
D. Grahame Holmes, Thomas A. Lipo. 电力电子变换器PWM技术原理与实践[M]. 周克亮译. 北京: 人民邮电出版社, 2010.
[39]
于吉, 尹项根, 赖锦木, 等. 电网不对称故障下MMC自适应相功率均衡控制策略[J]. 电力系统保护与控制, 2024, 52(1): 1-12.
YU Ji, YIN Xianggen, LAI Jinmu, et al. Adaptive leg-balancing control strategy of an MMC in an asymmetric AC grid fault[J]. Power System Protection and Control, 2024, 52(1): 1-12.
[40]
林文硕, 周荣生, 田慧丽, 等. 基于组合权重-TOPSIS的配电网调度水平评估[J]. 电力系统及其自动化学报, 2023, 35(7): 95-101.
LIN Wenshuo, ZHOU Rongsheng, TIAN Huili, et al. Assessment of distribution network scheduling level based on combined weight-TOPSIS[J]. Proceedings of the CSU-EPSA, 2023, 35(7): 95-101.
[41]
瞿雷, 杜振东. 基于组合权重与云模型的电网规划综合评价方法研究[J]. 上海电力大学学报, 2023, 39(4): 332-338.
QU Lei, DU Zhendong. Research on comprehensive evaluation method of power grid planning based on combined weights and cloud model[J]. Journal of Shanghai University of Electric Power, 2023, 39(4): 332-338.

基金

国家自然科学基金资助项目(523042811)

编辑: 张小飞
PDF(2539 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/