基于改进CGAN的主动配电网分布鲁棒日前调度

魏炜, 王禹东, 靳小龙

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 175-191.

PDF(3104 KB)
PDF(3104 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 175-191. DOI: 10.12204/j.issn.1000-7229.2025.06.014
智能电网

基于改进CGAN的主动配电网分布鲁棒日前调度

作者信息 +

Distributionally Robust Day-Ahead Dispatch Optimization for Active Distribution Networks Based on Improved Conditional Generative Adversarial Network

Author information +
文章历史 +

摘要

【目的】分布式可再生电源的规模化并网显著增强了配电系统的灵活调控能力,然而其固有的随机性和波动性出力特征,也给配电系统的安全稳定运行带来了严峻挑战。为有效提升日前调度决策对不确定因素的适应能力,提出了一种基于改进条件生成对抗网络(conditional generative adversarial network,CGAN)的主动配电网分布鲁棒日前优化调度方法。【方法】首先,提出了一种基于三维卷积(three-dimensional convolution,Conv3D)设计的改进CGAN模型,解决了计及时空相关特性的风光出力日前场景生成问题,有效降低了生成场景集的保守性。其次,利用生成的风光出力日前场景样本,提出了一种基于核密度估计(kernel density estimation,KDE)和Wasserstein距离的模糊集构造方法,实现了对样本分布信息的充分利用。在此基础上,建立了考虑多种网侧资源协同互动的主动配电网两阶段日前分布鲁棒优化(distributionally robust optimization,DRO)调度模型,并采用仿射策略和强对偶理论将原模型重构为混合整数线性规划问题实现求解。【结果】算例结果表明,尽管所提方法的日前调度成本相比确定性优化方法和随机优化方法分别增加了1.87%和0.21%,但在恶劣场景下的综合运行成本却分别降低了5.38%和0.46%。【结论】所提DRO模型对风、光出力不确定性表现出更强的适应能力,在保证鲁棒性的前提下,有效降低了日前调度计划在恶劣场景下的再调度成本。

Abstract

[Objective] The large-scale integration of distributed renewable energy generation (REG) has significantly enhanced the flexible regulation capabilities of distribution systems. However, the inherent randomness and volatility of REG output characteristics present serious challenges to the security and stability of distribution system operations. [Methods] To effectively improve the adaptability of day-ahead dispatch plans to uncertainties, this study proposes a distributionally robust day-ahead dispatch optimization method for active distribution networks (ADN) based on an improved conditional generative adversarial network (CGAN). First, an improved CGAN model designed by three-dimensional convolution (Conv3D) is proposed to address the problem of generating day-ahead scenarios for wind turbines (WT) and photovoltaic (PV) outputs considering spatio-temporal correlation, which effectively reduces the conservatism of the generated scenario set. Second, based on the generated day-ahead scenario samples of the WT and PV outputs, a Wasserstein ambiguity set construction method based on kernel density estimation (KDE) is proposed, which realizes full utilization of the sample distribution information. On this basis, a two-stage distributionally robust day-ahead dispatch optimization (DRO) model for ADN is established, considering multiple grid-side resource coordination. The original model is reconstructed into a mixed-integer linear programming problem to obtain a solution based on the affine strategy and strong duality theory. [Results] The findings demonstrate that although the day-ahead dispatch plan cost of the proposed method increases by 1.87% and 0.21% compared with the deterministic optimization (DO) and stochastic optimization (SO) methods, the integrated operation cost decreases by 5.38% and 0.46% under the worst-case scenario, respectively. [Conclusions] The analysis revealed that the proposed DRO model exhibits better adaptability to REG uncertainty and can effectively decrease the operational adjustment cost of the day-ahead dispatch plan while maintaining robustness, especially under the worst-case scenario.

关键词

条件生成对抗网络 / 分布鲁棒优化 / 日前调度 / 可再生能源发电不确定性

Key words

conditional generative adversarial network / distributionally robust optimization / day-ahead dispatch / renewable energy generation uncertainty

引用本文

导出引用
魏炜, 王禹东, 靳小龙. 基于改进CGAN的主动配电网分布鲁棒日前调度[J]. 电力建设. 2025, 46(6): 175-191 https://doi.org/10.12204/j.issn.1000-7229.2025.06.014
WEI Wei, WANG Yudong, JIN Xiaolong. Distributionally Robust Day-Ahead Dispatch Optimization for Active Distribution Networks Based on Improved Conditional Generative Adversarial Network[J]. Electric Power Construction. 2025, 46(6): 175-191 https://doi.org/10.12204/j.issn.1000-7229.2025.06.014
中图分类号: TM73   

参考文献

[1]
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2]
唐巍, 张起铭, 张璐, 等. 新型配电系统多层级交直流互联理念、关键技术与发展方向[J]. 电力系统自动化, 2023, 47(6): 2-17.
TANG Wei, ZHANG Qiming, ZHANG Lu, et al. Concept, key technologies and development direction of multilevel AC/DC interconnection in new distribution system[J]. Automation of Electric Power Systems, 2023, 47(6): 2-17.
[3]
谭畅舒, 李艳, 田杰, 等. 计及分布式能源的主动配电网恢复力综合评估[J]. 电力科学与技术学报, 2023, 38(1): 108-113.
TAN Changshu, LI Yan, TIAN Jie, et al. An evaluation method of active distribution network resilience considering the distributed energy resources[J]. Journal of Electric Power Science and Technology, 2023, 38(1): 108-113.
[4]
岳园园, 王主丁, 王辉, 等. 考虑设备调节成本的主动配电网日前优化调度[J]. 中国电力, 2023, 56(8): 136-142.
YUE Yuanyuan, WANG Zhuding, WANG Hui, et al. Day-ahead optimal dispatch for active distribution network considering action cost of devices[J]. Electric Power, 2023, 56(8): 136-142.
[5]
刘舒, 姚尚坤, 周敏, 等. 基于ICEEMDAN-TA-LSTM模型的主动配电网短期运行态势预测[J]. 电力科学与技术学报, 2023, 38(6): 175-186.
LIU Shu, YAO Shangkun, ZHOU Min, et al. Active distribution network operating situation prediction based on ICEEMDAN-TA-LSTM model[J]. Journal of Electric Power Science and Technology, 2023, 38(6): 175-186.
[6]
林舜江, 冯祥勇, 梁炜焜, 等. 新能源电力系统不确定优化调度方法研究现状及展望[J]. 电力系统自动化, 2024, 48(10): 20-41.
LIN Shunjiang, FENG Xiangyong, LIANG Weikun, et al. Research status and prospect of uncertain optimal dispatch methods for renewable energy power systems[J]. Automation of Electric Power Systems, 2024, 48(10): 20-41.
[7]
田宇, 黄婧, 谢枭, 等. 主动配电网无功补偿和OLTC鲁棒多目标优化配置[J]. 中国电力, 2023, 56(3): 94-99.
TIAN Yu, HUANG Jing, XIE Xiao, et al. Multi-objective optimal allocation of reactive compensation and OLTC in active distribution network[J]. Electric Power, 2023, 56(3): 94-99.
[8]
贺帅佳, 阮贺彬, 高红均, 等. 分布鲁棒优化方法在电力系统中的理论分析与应用综述[J]. 电力系统自动化, 2020, 44(14): 179-191.
HE Shuaijia, RUAN Hebin, GAO Hongjun, et al. Overview on theory analysis and application of distributionally robust optimization method in power system[J]. Automation of Electric Power Systems, 2020, 44(14): 179-191.
[9]
杜刚, 赵冬梅, 刘鑫. 计及风电不确定性优化调度研究综述[J]. 中国电机工程学报, 2023, 43(7): 2608-2627.
DU Gang, ZHAO Dongmei, LIU Xin. Research review on optimal scheduling considering wind power uncertainty[J]. Proceedings of the CSEE, 2023, 43(7): 2608-2627.
[10]
YANG Y, WU W C. A distributionally robust optimization model for real-time power dispatch in distribution networks[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3743-3752.
[11]
DUAN C, FANG W L, JIANG L, et al. Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric[J]. IEEE Transactions on Power Systems, 2018, 33(5): 4924-4936.
[12]
贺帅佳, 高红均, 刘俊勇, 等. 计及需求响应柔性调节的分布鲁棒DG优化配置[J]. 中国电机工程学报, 2019, 39(8): 2253-2264, 8.
HE Shuaijia, GAO Hongjun, LIU Junyong, et al. Distributionally robust optimal DG allocation model considering flexible adjustment of demand response[J]. Proceedings of the CSEE, 2019, 39(8): 2253-2264, 8.
[13]
葛少云, 侯亭玉, 吴鸣, 等. 柔性互联配电网分布式电源承载能力分布鲁棒优化模型[J]. 电力系统自动化, 2023, 47(13): 140-148.
GE Shaoyun, HOU Tingyu, WU Ming, et al. Distributionally robust optimization model of hosting capability for distributed generators in flexible interconnected distribution network[J]. Automation of Electric Power Systems, 2023, 47(13): 140-148.
[14]
孙旭, 邱晓燕, 张志荣, 等. 基于数据驱动的交直流配电网分布鲁棒优化调度[J]. 电网技术, 2021, 45(12): 4768-4778.
SUN Xu, QIU Xiaoyan, ZHANG Zhirong, et al. Distributed robust optimal dispatching of AC/DC distribution network based on data driven mode[J]. Power System Technology, 2021, 45(12): 4768-4778.
[15]
ZHOU A P, ZHAI H F, YANG M, et al. Three-phase unbalanced distribution network dynamic reconfiguration: a distributionally robust approach[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2063-2074.
[16]
董骁翀, 张姝, 李烨, 等. 电力系统中时序场景生成和约简方法研究综述[J]. 电网技术, 2023, 47(2): 709-721.
DONG Xiaochong, ZHANG Shu, LI Ye, et al. Review of power system temporal scenario generation and reduction methods[J]. Power System Technology, 2023, 47(2): 709-721.
[17]
黎静华, 文劲宇, 程时杰, 等. 考虑多风电场出力Copula相关关系的场景生成方法[J]. 中国电机工程学报, 2013, 33(16): 30-36, 21.
LI Jinghua, WEN Jinyu, CHENG Shijie, et al. A scene generation method considering copula correlation relationship of multi-wind farms power[J]. Proceedings of the CSEE, 2013, 33(16): 30-36, 21.
[18]
WANG Z, WANG W S, LIU C, et al. Forecasted scenarios of regional wind farms based on regular vine copulas[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(1): 77-85.
[19]
贾梦瑶, 王玉玮, 宋明浩. 基于时间生成对抗网络的风电随机场景预测[J]. 智慧电力, 2023, 51(8): 59-66.
JIA Mengyao, WANG Yuwei, SONG Minghao. Stochastic scenario prediction of wind power based on time generative adversarial networks[J]. Smart Power, 2023, 51(8): 59-66.
[20]
雷柯松, 吐松江·卡日, 伊力哈木·亚尔买买提, 等. 基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测[J]. 电力系统保护与控制, 2023, 51(9): 108-118.
LEI Kesong, TUSONGJIANG·Kari, YILIHAMU·Yaermaimaiti, et al. Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-attention[J]. Power System Protection and Control, 2023, 51(9): 108-118.
[21]
王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1869.
WANG Shouxiang, CHEN Haiwen, LI Xiaoping, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42(6): 1860-1869.
[22]
董骁翀, 孙英云, 蒲天骄. 基于条件生成对抗网络的可再生能源日前场景生成方法[J]. 中国电机工程学报, 2020, 40(17): 5527-5536.
DONG Xiaochong, SUN Yingyun, PU Tianjiao. Day-ahead scenario generation of renewable energy based on conditional GAN[J]. Proceedings of the CSEE, 2020, 40(17): 5527-5536.
[23]
黄越辉, 孙亚南, 李驰, 等. 基于条件生成对抗网络的多区域风电短期出力场景生成方法[J]. 电网技术, 2023, 47(1): 63-77.
HUANG Yuehui, SUN Yanan, LI Chi, et al. Constructing method of short-term output scenarios for multi-regional wind power based on conditional generative adversarial network[J]. Power System Technology, 2023, 47(1): 63-77.
[24]
YUAN R, WANG B, SUN Y Q, et al. Conditional style-based generative adversarial networks for renewable scenario generation[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1281-1296.
[25]
朱瑞金, 廖文龙, 王玥珑, 等. 基于生成矩匹配网络的光伏和风电随机场景生成[J]. 高电压技术, 2022, 48(1): 374-385.
ZHU Ruijin, LIAO Wenlong, WANG Yuelong, et al. Stochastic scenarios generation for wind power and photovoltaic system based on generative moment matching network[J]. High Voltage Engineering, 2022, 48(1): 374-385.
[26]
徐艳春, 李思佳, 汪平, 等. 考虑分布式电源时空相关及电动汽车充电负荷分布特性的有源配电网概率潮流[J/OL]. 电网技术, 2023.(2023-03-27)[2024-04-12]. https://doi.org/10.13335/j.1000-3673.pst.2023.0197.
XU Yanchun, LI Sijia, Wang Ping, et al. Probabilistic load flow of active distribution network considering DG space-time correlation and EV distribution characteristics[J/OL]. Power System Technology, 2023. (2023-03-27)[2024-04-12]. https://doi.org/10.13335/j.1000-3673.pst.2023.0197.
[27]
董永生, 范世朝, 张宇, 等. 生成对抗网络的发展与挑战[J]. 信号处理, 2023, 39(1): 154-175.
DONG Yongsheng, FAN Shichao, ZHANG Yu, et al. Development and challenge of generative adversarial network[J]. Journal of Signal Processing, 2023, 39(1): 154-175.
[28]
FAN W, JU L W, TAN Z F, et al. Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer[J]. Applied Energy, 2023, 331: 120426.
[29]
赵会茹, 王学杰, 李兵抗, 等. 考虑能量共享的多社区光储系统分布鲁棒优化调度[J]. 电力系统自动化, 2022, 46(9): 21-31.
ZHAO Huiru, WANG Xuejie, LI Bingkang, et al. Distributionally robust optimal dispatch for multi-community photovoltaic and energy storage system considering energy sharing[J]. Automation of Electric Power Systems, 2022, 46(9): 21-31.
[30]
竺如洁, 韦化, 白晓清. 多源动态最优潮流的分布鲁棒优化方法[J]. 中国电机工程学报, 2020, 40(11): 3489-3498.
ZHU Rujie, WEI Hua, BAI Xiaoqing. Distributionally robust optimization of multi-energy dynamic optimal power flow[J]. Proceedings of the CSEE, 2020, 40(11): 3489-3498.
[31]
米阳, 申杰, 卢长坤, 等. 考虑含储能的三端智能软开关与需求侧响应的主动配电网有功无功协调优化[J]. 电力系统保护与控制, 2024, 52(3): 104-118.
MI Yang, SHEN Jie, LU Changkun, et al. Active and reactive power coordination optimization of an active distribution network considering a three-terminal soft open point with energy storage and demand response[J]. Power System Protection and Control, 2024, 52(3): 104-118.
[32]
章博, 刘晟源, 林振智, 等. 高比例新能源下考虑需求侧响应和智能软开关的配电网重构[J]. 电力系统自动化, 2021, 45(8): 86-94.
ZHANG Bo, LIU Shengyuan, LIN Zhenzhi, et al. Distribution network reconfiguration with high penetration of renewable energy considering demand response and soft open point[J]. Automation of Electric Power Systems, 2021, 45(8): 86-94.
[33]
卞艺衡, 别朝红. 面向弹性提升的智能配电网远动开关优化配置模型[J]. 电力系统自动化, 2021, 45(3): 33-39.
BIAN Yiheng, BIE Zhaohong. Resilience-enhanced optimal placement model of remote-controlled switch for smart distribution network[J]. Automation of Electric Power Systems, 2021, 45(3): 33-39.
[34]
孙晶琪, 王愿, 郭晓慧, 等. 考虑环境外部性和风光出力不确定性的虚拟电厂运行优化[J]. 电力系统自动化, 2022, 46(8): 50-59.
SUN Jingqi, WANG Yuan, GUO Xiaohui, et al. Optimal operation of virtual power plant considering environmental externality and output uncertainty of wind and photovoltaic power[J]. Automation of Electric Power Systems, 2022, 46(8): 50-59.
[35]
ZHAO C Y, GUAN Y P. Data-driven risk-averse stochastic optimization with Wasserstein metric[J]. Operations Research Letters, 2018, 46(2): 262-267.
[36]
张旭, 么莉, 陈晨, 等. 交直流混合配电网网络重构与无功优化协同的两阶段鲁棒优化模型[J]. 电网技术, 2022, 46(3): 1149-1162.
ZHANG Xu, YAO Li, CHEN Chen, et al. A novel two-stage robust model for co-optimization of reconfiguration and reactive power in AC/DC hybrid distribution network[J]. Power System Technology, 2022, 46(3): 1149-1162.

基金

国家自然科学基金项目(52207133)

编辑: 张小飞
PDF(3104 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/