PDF(3866 KB)
PDF(3866 KB)
PDF(3866 KB)
柔性负荷虚拟电厂参与削峰需求响应的自适应控制方法
Adaptive Control Method of Peak Shaving Demand Response Program for Flexible Load Virtual Power Plant
【目的】 以空调负荷为主体的柔性负荷虚拟电厂(virtual power plant, VPP)在实际运行中易受控制时延、模型与量测误差等不确定性的影响,使削峰需求响应(demand response, DR)的效果偏离预期。导致该现象的重要原因为现有的DR策略往往依据静态的目标负荷曲线进行负荷跟踪,难以适应时变的运行环境。【方法】 以园区大规模分体式变频空调为例,提出柔性负荷VPP参与削峰DR的自适应控制方法,在需求响应邀约允许范围内依据当前的运行环境来调整后续DR时段的目标负荷曲线,有效提升了削峰DR的经济性和鲁棒性。在所提闭环控制模型中,被控过程被解耦为小规模且线性的进度偏差模型和削峰电量修正模型,二者分别置于控制器和反馈环节。其中,进度偏差模型将计划削峰电量分摊至空调,其解满足功率约束和用户舒适度约束;削峰电量修正模型结合削峰DR的响应实况来自适应调整后续控制时刻的目标负荷曲线,用于抵消不确定性对控制效果的负面影响。【结果】 算例以4类变频空调集群为研究对象,在市场模式和邀约模式下,探讨了不同削峰策略、模型与量测误差和控制时延对VPP参与削峰DR的影响,侧重验证所提方法的经济性和鲁棒性。【结论】 结果表明,所提基于动态目标负荷曲线的削峰DR自适应控制方法,能够根据实际响应情况自适应地调整目标负荷曲线,在控制精度、经济收益和鲁棒性方面表现优越。
[Objective] Virtual power plants (VPPs) centered on air-conditioning loads are susceptible to uncertainties, such as control delays and discrepancies between models and measurements, leading to deviations in the efficacy of demand response (DR) strategies from anticipated outcomes. A key contributor to this phenomenon is the reliance of existing DR strategies on static target load profiles, hindering their adaptability to dynamic operational environments.[Methods] To address this issue, this study introduced an adaptive control methodology for flexible-load VPPs participating in peak-shaving DR, utilizing a large-scale split-type inverter air conditioner on campuses as a case study. This approach allowed the adjustment of target load profiles for subsequent DR periods within the permissible range of the DR invitation based on the current operational environment, thereby enhancing the economic and robust nature of peak-shaving DR. In the proposed closed-loop control model, the controlled process was decoupled into a small-scale linear progress deviation model and a peak-shaving electricity correction model, each placed within the controller and feedback loop. The progress deviation model allocated planned peak shaving electricity to air conditioners, ensuring compliance with power constraints and user comfort levels. The peak-shaving electricity correction model, with the actual response to the peak-shaving DR, adaptively adjusted the target load profile for subsequent control moments to mitigate the adverse effects of uncertainties on control effectiveness.[Results] The case study focused on four types of inverter air conditioner clusters and examined the impact of different peak-shaving strategies, models, measurement errors, and control delays on the participation of the VPP in peak-shaving DR under market and invitation modes. This study verified the proposed method’s economic efficiency and robustness.[Conclusions] The results show that the proposed adaptive control method for peak-shaving DR based on a dynamic target load curve can autonomously adjust the target load curve based on the actual response conditions, demonstrating superior performance in terms of control accuracy, economic benefits, and robustness.
虚拟电厂(VPP) / 自适应控制 / 削峰需求响应 / 目标负荷曲线 / 变频空调
virtual power plant (VPP) / adaptive control / peak shaving demand response / target load curve / inverter air-conditioner
| [1] |
李嘉媚, 艾芊, 殷爽睿. 虚拟电厂参与调峰调频服务的市场机制与国外经验借鉴[J]. 中国电机工程学报, 2022, 42(1): 37-56.
|
| [2] |
国务院常务会议:财政货币政策以就业优先为导向稳住经济大盘[N/OL]. 经济参考报, 2022-05-12. (2022-05-12)[2024-02-20]. https://www.gov.cn/guowuyuan/2022-05/12/content_5689990.htm.
|
| [3] |
李庆, 董玉芳, 刘子腾, 等. 上海市虚拟电厂市场化的盈利模式实践与探索[J]. 电力建设, 2025, 46(1): 27-36.
|
| [4] |
上海市经济信息化委. 2021年上海市迎峰度夏有序用电方案[EB/OL]. (2021-07-19) [2024-02-20]. http://sheitc.sh.gov.cn/jjyx/20210719/288e22e2496c464e87c5ecce16bce9d5.html.
|
| [5] |
关舒丰, 王旭, 蒋传文, 等. 基于可控负荷响应性能差异的虚拟电厂分类聚合方法及辅助服务市场投标策略研究[J]. 电网技术, 2022, 46(3): 933-944.
|
| [6] |
刘思源, 艾芊, 郑建平, 等. 多时间尺度的多虚拟电厂双层协调机制与运行策略[J]. 中国电机工程学报, 2018, 38(3): 753-761.
|
| [7] |
浙江省发展和改革委员会. 关于开展2021年度电力需求响应工作的通知[EB/OL]. (2021-06-01) [2024-02-20]. https://fzggw.zj.gov.cn/art/2021/6/8/art_1229629046_4906648.html.
|
| [8] |
丁乐言, 柯松, 张帆, 等. 考虑出行需求和引导策略的电动汽车充电负荷预测[J]. 电力建设, 2024, 45(6): 10-26.
随着电动汽车逐步替代燃料汽车,电动汽车充电负荷对电网造成的影响也越来越大,为此提出了一种考虑出行需求与引导策略的电动汽车充电负荷时空分布预测方法。首先,基于路段通行时间模型建立划分功能区域的半动态交通网模型;进一步,建立电动汽车能耗模型,在分析电价、气候和季节等因素对车主出行需求影响的同时,对充电需求、半动态交通网模型、能耗模型以及传统出行链进行修正;然后,考虑外部因素影响下车主的有限理性,提出引导策略下私家车和出租车充电负荷预测方法;最后,在半动态交通网模型中用改进的出行链和起讫点(origin-destination, OD)矩阵分别模拟私家车和出租车研究时间内的出行行为,通过在划分区域的半动态交通网仿真,验证了所提出的电动汽车充电负荷时空分布预测方法的有效性。仿真结果也表明电动汽车充电负荷时空分布预测情况与对外部影响因素的分析相符,同时提出的引导策略能提升车主决策的满意程度。
With electric vehicles (EVs) gradually replacing fueled vehicles, the impact of their charging load on the power grid is increasing. Therefore, this study proposes a spatial-temporal distribution prediction method for the charging load of EVs that considers travel demand and a guidance strategy. First, a semi-dynamic traffic network model that divides functional areas was developed based on a road travel time model. Furthermore, an energy-consumption model of EVs was established, and the charging demand, semi-dynamic transportation network model, energy consumption model, and traditional travel chain were revised according to the influence of the electricity price, climate, and season on the travel demand of vehicle owners. Considering the limited rationality of vehicle owners based on the influence of external factors, a charging load prediction method for private cars and taxis based on a guidance strategy is proposed. Finally, the modified trip chain and OD matrix were used to simulate the travel behavior of private cars and taxis, respectively, in the semi-dynamic traffic network model during the study period, and the validity of the proposed prediction method was verified through a simulation experiment of the semi-dynamic traffic network in the divided regions. The results show that the spatial-temporal distribution of the charging load for EVs is consistent with the analysis of external influencing factors, and the proposed guidance strategy can improve the satisfaction of vehicle owners.
|
| [9] |
陈新和, 裴玮, 邓卫, 等. 数据驱动的虚拟电厂调度特性封装方法[J]. 中国电机工程学报, 2021, 41(14): 4816-4828.
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
王蓓蓓, 胡晓青, 顾伟扬, 等. 分层控制架构下大规模空调负荷参与调峰的分散式协同控制策略[J]. 中国电机工程学报, 2019, 39(12): 3514-3528.
|
| [18] |
范帅, 何光宇, 郑湘明, 等. 基于在线分布式优化的虚拟电厂自趋优运行方法研究[J]. 中国电机工程学报, 2023, 43(13): 4935-4950.
|
| [19] |
何光宇, 孙英云, 梅生伟, 等. 多指标自趋优的智能电网[J]. 电力系统自动化, 2009, 33(17): 1-5.
|
| [20] |
周欢, 王芬, 李志勇, 等. 虚拟电厂自趋优负荷跟踪控制策略[J]. 中国电机工程学报, 2021, 41(24): 8334-8349.
|
| [21] |
范帅, 郏琨琪, 王芬, 等. 基于负荷准线的大规模需求响应[J]. 电力系统自动化, 2020, 44(15): 19-27.
|
| [22] |
江苏省经济和信息化委员会. 江苏省电力需求响应实施细则[EB/OL]. (2015-06-15) [2024-02-20]. http://gxt.jiangsu.gov.cn/art/2015/6/25/art_6299_3030239.html.
|
| [23] |
安徽省发展和改革委员会. 安徽省电力需求响应实施方案(试行)[EB/OL]. (2022-01-18) [2024-02-20]. http://fzggw.ah.gov.cn/public/22554241/146418981.html.
|
| [24] |
山东省经济和信息化委员会. 关于开展电力需求响应市场试点工作的通知[EB/OL]. (2018-07-12) [2024-02-20]. http://gxt.shandong.gov.cn/art/2018/7/12/art_15179_4389096.html.
|
| [25] |
福建省发展和改革委员会. 福建省电力需求响应实施方案(试行)[EB/OL]. (2022-05-24) [2024-02-20]. http://fgw.fj.gov.cn/zfxxgkzl/zfxxgkml/bwgfxwj/202205/t20220524_5916577.htm.
|
| [26] |
陕西省发展和改革委员会. 2021年陕西省电力需求响应工作方案[EB/OL]. (2021-05-21)[2024-02-20]. https://sndrc.shaanxi.gov.cn/sy/xwxx/gggg/202304/t20230412_3118566_wap.html.
|
| [27] |
胡晓青. 空调负荷参与电力系统需求响应的建模及控制策略研究[D]. 南京: 东南大学, 2017.
|
| [28] |
周奇, 马瑞, 王铁强, 等. 基于多智能体的主动配电网空调负荷聚合及其降压调温削减方法[J]. 中国电机工程学报, 2022, 42(18): 6668-6681.
|
| [29] |
吴承鑫, 沈海军, 王治华, 等. 数据驱动的变频空调负荷模型参数在线辨识方法[J]. 电力系统自动化, 2022, 46(1): 120-129.
|
| [30] |
刘萌, 褚晓东, 张文, 等. 基于多样性保持的空调负荷群调度控制策略[J]. 中国电机工程学报, 2014, 34(22): 3674-3682.
|
AI小编
/
| 〈 |
|
〉 |