计及新型分布式资源与电碳交易的虚拟电厂分布鲁棒低碳调度模型

王家怡, 贺帅佳

电力建设 ›› 2025, Vol. 46 ›› Issue (7) : 13-26.

PDF(1719 KB)
PDF(1719 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (7) : 13-26. DOI: 10.12204/j.issn.1000-7229.2025.07.002
虚拟电厂群体智能运行与优化控制·栏目主持:高扬、尚策、胡枭、夏元兴、郑晓东、杨楠·

计及新型分布式资源与电碳交易的虚拟电厂分布鲁棒低碳调度模型

作者信息 +

Distributionally Robust Low-Carbon Scheduling Model for Virtual Power Plants Considering Emerging Distributed Resources and Electricity Carbon Trading

Author information +
文章历史 +

摘要

【目的】 为了保证虚拟电厂调度策略的低碳经济性,提出了考虑新型分布式资源与电碳交易的虚拟电厂分布鲁棒低碳调度模型。【方法】 首先,建立了虚拟电厂电碳交易框架。其次,在虚拟电厂中针对电制氢系统与碳捕集系统这2种新型分布式资源进行建模,并考虑储能、风电、光伏等传统分布式资源。接着,以成本最小化为目标,建立虚拟电厂低碳调度模型。鉴于风光出力与电氢负荷的精确概率分布难以获得,利用1范数和无穷范数构建其概率分布不确定集合,为避免传统多离散场景分布鲁棒方法的复杂迭代过程,将分布鲁棒调度模型进行对偶转化求解。最后通过算例验证了所提分布鲁棒调度模型在处理源荷不确定性、提升虚拟电厂调度经济性与低碳性方面的有效性。【结果】 考虑电碳交易比不考虑电碳交易降低了约24.7%,过剩的清洁能源可全部在电力市场售出,使运行调度实现获利;同时考虑碳捕集系统与电制氢系统后,弃电量与运行成本比仅考虑碳捕集系统分别进一步降低了约34.7%和28.1%,比仅考虑电制氢系统分别进一步降低了约2.6%和1.8%;所提分布鲁棒方法的总收益误差约为1.7%,求解速度提升了约40%。【结论】 考虑电碳交易或同时考虑电制氢系统与碳捕集系统这2种新型分布式资源能够降低调度成本、弃电量与碳排放,且所提分布鲁棒方法决策结果精确性良好,求解速度得到大幅提升。

Abstract

[Objective] To improve the low-carbon economic performance of scheduling strategies for virtual power plants, this study proposes a distributionally robust low-carbon scheduling model that incorporates emerging distributed resources and electricity-carbon trading. [Methods] First, this study established an electricity-carbon trading framework for a virtual power plant. Second, two emerging distributed resources (e.g., electric hydrogen production system and carbon capture system) were modeled within virtual power plants, along with traditional distributed resources (e.g., energy storage, wind power, and photovoltaics). Next, to minimize costs and consider the impact of electricity carbon trading, a low-carbon scheduling model for virtual power plants was established. Owing to the difficulty in obtaining accurate probability distributions of wind and solar power outputs and electric hydrogen loads, an uncertainty set of probability distributions was constructed using the 1-norm and infinite-norm. To avoid the complex iterations required in traditional multiple discrete-scenario distributionally robust optimization methods, this study solves the proposed model using a strong duality. Finally, the effectiveness of the proposed model in addressing source-load uncertainty and improving economic and low-carbon performance was verified based on numerical examples.[Results] Electricity-carbon trading reduced costs by approximately 24.7% compared to no electricity-carbon trading. Excess renewable energy could be sold entirely to the electricity market to obtain profitable operational results. Considering both the carbon capture system and the electric hydrogen production system, both abandoned electricity and operating costs are further respectively reduced by about 34.7% and 28.1% when only considering the carbon capture system, and respectively by about 2.6% and 1.8% when only considering the electric hydrogen production system. The total profit error of the proposed distributionally robust optimization method was approximately 1.7%, and the solving speed improved by approximately 40%.[Conclusions] Electricity-carbon trading and the integration of electric hydrogen production system and carbon capture system can jointly reduce scheduling costs, abandoned electricity, and carbon emissions. Moreover, the proposed distributionally robust optimization method showed high accuracy in decision-making results and significantly improved the solving speed.

关键词

新型分布式资源 / 虚拟电厂 / 电碳交易 / 分布鲁棒 / 低碳调度

Key words

new-type distributed resources / virtual power plant / electricity carbon trading / distributionally robust optimization / low-carbon scheduling

引用本文

导出引用
王家怡, 贺帅佳. 计及新型分布式资源与电碳交易的虚拟电厂分布鲁棒低碳调度模型[J]. 电力建设. 2025, 46(7): 13-26 https://doi.org/10.12204/j.issn.1000-7229.2025.07.002
WANG Jiayi, HE Shuaijia. Distributionally Robust Low-Carbon Scheduling Model for Virtual Power Plants Considering Emerging Distributed Resources and Electricity Carbon Trading[J]. Electric Power Construction. 2025, 46(7): 13-26 https://doi.org/10.12204/j.issn.1000-7229.2025.07.002
中图分类号: TM73   

参考文献

[1]
刘金朋, 胡国松, 彭锦淳, 等. 多能互补的虚拟电厂低碳-经济-鲁棒优化调度[J]. 中国电机工程学报, 2024, 44(24): 9718-9731.
LIU Jinpeng, HU Guosong, PENG Jinchun, et al. Low-carbon economic-robust optimization scheduling of multi-energy complementary virtual power plants[J]. Proceedings of the CSEE, 2024, 44(24): 9718-9731.
[2]
杜云飞, 沈欣炜, 郦洪柯, 等. 考虑微观选址的分布式海上风电制氢容量优化配置[J]. 电力系统自动化, 2024, 48(21): 61-70.
DU Yunfei, SHEN Xinwei, LI Hongke, et al. Capacity optimal configuration of distributed offshore wind power to hydrogen considering micro-siting[J]. Automation of Electric Power Systems, 2024, 48(21): 61-70.
[3]
崔杨, 孙喜斌, 朱晗, 等. 考虑“燃煤+” 耦合发电与灵活性资源备用的综合能源系统低碳经济调度[J/OL]. 中国电机工程学报, 2024: 1-14. (2024-08-01) [2024-12-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20240731003&dbname=CJFD&dbcode=CJFQ.
CUI Yang, SUN Xibin, ZHU Han, et al. Low-carbon economic dispatch of integrated energy system considering “coal+” coupled power generation and flexible resource reserve[J/OL]. Proceedings of the CSEE, 2024: 1-14. (2024-08-01) [2024-12-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20240731003&dbname=CJFD&dbcode=CJFQ.
[4]
王蓬蓬, 宋运忠. 计及最恶劣场景概率和供需灵活性的综合能源系统分布鲁棒低碳优化调度[J]. 电力系统保护与控制, 2024, 52(13): 78-89.
WANG Pengpeng, SONG Yunzhong. Distributed robust low-carbon optimal scheduling of an integrated energy system considering worst-case scenario probability and flexibility of supply and demand[J]. Power System Protection and Control, 2024, 52(13): 78-89.
[5]
GORBACHEV S, GUO J R, MANI A, et al. MPC-based LFC for interconnected power systems with PVA and ESS under model uncertainty and communication delay[J]. Protection and Control of Modern Power Systems, 2023, 8(1): 52.
[6]
徐天韵, 陈涛, 张鑫, 等. 基于奇诺多面体的虚拟电厂分布式资源广域聚合调控方法[J]. 电力系统自动化, 2024, 48(18): 139-148.
XU Tianyun, CHEN Tao, ZHANG Xin, et al. Zonotope-based wide-area aggregation and regulation method for distributed resources in virtual power plant[J]. Automation of Electric Power Systems, 2024, 48(18): 139-148.
[7]
李孟阳, 李国杰, 汪可友, 等. 考虑需求响应及调频性能变化的虚拟电厂日前投标策略[J]. 电力系统保护与控制, 2023, 51(3): 13-25.
LI Mengyang, LI Guojie, WANG Keyou, et al. Day-ahead bidding strategy for virtual power plant considering demand response and frequency regulation performance variation[J]. Power System Protection and Control, 2023, 51(3): 13-25.
[8]
王浩丞, 高红均, 王仁浚. 计及需求响应的虚拟电厂日前市场交易策略研究[J]. 智慧电力, 2024, 52(7): 64-71.
WANG Haocheng, GAO Hongjun, WANG Renjun. Day-ahead market trading strategy of virtual power plant considering demand response[J]. Smart Power, 2024, 52(7): 64-71.
[9]
彭超逸, 徐苏越, 顾慧杰, 等. 基于主从博弈的虚拟电厂参与多元竞争市场投标策略研究[J]. 电力系统保护与控制, 2024, 52(7): 125-137.
PENG Chaoyi, XU Suyue, GU Huijie, et al. Bidding strategy for a virtual power plant participating in a multiple competitive market based on the Stackelberg game[J]. Power System Protection and Control, 2024, 52(7): 125-137.
[10]
宋梦, 经昕怡, 蔡昀峰, 等. 基于产消者能量-备用联合共享的虚拟电厂优化运营方法[J]. 电力系统自动化, 2024, 48(18): 3-13.
SONG Meng, JING Xinyi, CAI Yunfeng, et al. Optimal operation method for virtual power plant based on joint sharing of energy and reserve of prosumers[J]. Automation of Electric Power Systems, 2024, 48(18): 3-13.
[11]
乔奕宁, 肖飞, 艾芊, 等. 虚拟电厂需求侧灵活性资源聚合参与调峰的优化调度策略[J/OL]. 电力自动化设备, 2024: 1-19. (2024-12-20)[2025-01-23]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLZS20241219001&dbname=CJFD&dbcode=CJFQ.
QIAO Yining, XIAO Fei, AI Qian, et al. Optimal scheduling strategy of demand-side flexible resource aggregation participating in peak shaving in virtual power plant[J/OL]. Electric Power Automation Equipment, 2024: 1-19. (2024-12-20)[2025-01-23]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLZS20241219001&dbname=CJFD&dbcode=CJFQ.
[12]
张扬, 叶萌, 史云鹏, 等. 基于运行包络线的虚拟电厂日前-实时响应能力量化研究[J]. 供用电, 2024, 41(12): 2-12, 32.
ZHANG Yang, YE Meng, SHI Yunpeng, et al. Quantitative research on day-ahead and real-time response capability of virtual power plant based on operation envelope[J]. Distribution & Utilization, 2024, 41(12): 2-12, 32.
[13]
张钧钊, 姜欣, 段世杰, 等. 虚拟电厂参与电-碳联合市场运行的竞价策略研究[J]. 电力系统保护与控制, 2023, 51(11): 108-118.
ZHANG Junzhao, JIANG Xin, DUAN Shijie, et al. Bidding strategy for a virtual power plant to participate in the power-carbon joint market[J]. Power System Protection and Control, 2023, 51(11): 108-118.
[14]
杨芃, 杨晓辉, 杨莉, 等. 基于碳市场与绿证分配制度的源荷低碳经济调度[J]. 南方电网技术, 2025, 19(3): 87-95.
YANG Peng, YANG Xiaohui, YANG Li, et al. Low-carbon economic dispatching of source and load based on carbon market and green certificate allocation system[J]. Southern Power System Technology, 2025, 19(3): 87-95.
[15]
舒征宇, 朱凯翔, 王灿, 等. 考虑碳交易的虚拟电厂日前电力市场竞价策略[J]. 电力工程技术, 2024, 43(5): 58-68, 149.
SHU Zhengyu, ZHU Kaixiang, WANG Can, et al. Virtual power plants participating in day-ahead electricity market bidding strategy considering carbon trading[J]. Electric Power Engineering Technology, 2024, 43(5): 58-68, 149.
[16]
周亦洲, 吴俊钊, 孙国强, 等. 面向多级电-碳耦合市场的虚拟电厂两阶段鲁棒交易策略[J]. 电力系统自动化, 2024, 48(18): 38-46.
ZHOU Yizhou, WU Junzhao, SUN Guoqiang, et al. Two-stage robust trading strategy for virtual power plant in multi-level electricity-carbon coupling market[J]. Automation of Electric Power Systems, 2024, 48(18): 38-46.
[17]
程明, 张新燕, 王志磊, 等. 考虑接入电动汽车充电站的虚拟电厂低碳经济调度[J]. 科学技术与工程, 2024, 24(19): 8115-8126.
CHENG Ming, ZHANG Xinyan, WANG Zhilei, et al. Low carbon economic dispatch of virtual power plant considering access to electric vehicle charging station[J]. Science Technology and Engineering, 2024, 24(19): 8115-8126.
[18]
陈继明, 徐乾, 高辉, 等. 考虑碳排放约束的风电-碳捕集-电转气虚拟电厂低碳经济优化[J]. 电气工程学报, 2024, 19(4): 287-295.
CHEN Jiming, XU Qian, GAO Hui, et al. Low carbon economy optimization of WT-CCS-P2G virtual power plant considering carbon emission constraint[J]. Journal of Electrical Engineering, 2024, 19(4): 287-295.
[19]
张泽熙, 杨争林, 郑亚先, 等. 电氢市场主体参与电力市场的路径及发展展望[J]. 电网技术, 2024, 48(4): 1403-1419.
ZHANG Zexi, YANG Zhenglin, ZHENG Yaxian, et al. The path and development prospects for the participation of hydrogen-electricity market participants in the electricity market[J]. Power System Technology, 2024, 48(4): 1403-1419.
[20]
陈永权, 方瑜. 多组合虚拟电厂中氢储能低碳经济配置与优化[J]. 电网与清洁能源, 2024, 40(3): 107-118.
CHEN Yongquan, FANG Yu. Low carbon economic configuration and optimization of hydrogen storage in multi-portfolio virtual power plants[J]. Power System and Clean Energy, 2024, 40(3): 107-118.
[21]
闫庆友, 党嘉璐, 林宏宇, 等. 考虑全生命周期碳排放的电氢耦合VPP调度优化[J]. 电力建设, 2024, 45(4): 13-25.
摘要
随着可再生能源的大规模开发、高比例并网,虚拟电厂逐渐成为充分发挥新型电力系统经济-环境效益的关键技术之一,文章重点研究了电氢耦合虚拟电厂多目标优化问题。首先,构建了含分布式风光机组、微型燃气轮机、分布式储能、柔性负荷的电氢耦合虚拟电厂。其次,运用多主体全生命周期法计算得到虚拟电厂构成组件的碳排放系数,并将其与阶梯式碳交易机制联合引入优化模型中。然后,以系统内运行成本最小和二氧化碳排放量最低为目标函数,通过赋权法将多目标优化转为单目标优化。最后选取华北某园区夏季、过渡季、冬季3个典型场景为算例分析验证所构建模型的有效性,算例结果表明该模型能兼顾虚拟电厂内部各设备主体运行的经济利益和环境效益。
YAN Qingyou, DANG Jialu, LIN Hongyu, et al. The scheduling optimization model for electric-hydrogen coupled VPP considering life-cycle carbon emissions[J]. Electric Power Construction, 2024, 45(4): 13-25.

Owing to the large-scale development of renewable energy and the high proportion of grid connections, hybrid virtual power plants have gradually become one of the key technologies for fully exploiting the economic and environmental benefits of new power systems. This study focuses on the multi-objective optimization of an electric-hydrogen coupling virtual power plant. First, a virtual power plant with electric-hydrogen coupling, which comprises a distributed wind turbine, micro gas turbine, distributed energy storage, and flexible load, is constructed. Second, the carbon-emission coefficient of the components of the virtual power plant is measured using the multi-agent full life-cycle method, which is combined with the stepped carbon-trading mechanism in the optimization model. Third, considering the minimum operating cost and lowest carbon-dioxide emission in the system as the objective function, the multi-objective optimization is transformed into a single-objective optimization using the weighting method. Finally, three typical scenarios in a park in North China during summer, a transition season, and winter are selected for analysis to verify the effectiveness and feasibility of the model. The simulation results show that the model considers the economic and environmental benefits of operating the main equipment in the virtual power plant.

[22]
高兵, 王进, 张孝跃, 等. 考虑碳捕集机组深度调峰的虚拟电厂低碳经济调度[J/OL]. 现代电力, 2024: 1-8. (2024-03-08) [2024-12-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XDDL20240304001&dbname=CJFD&dbcode=CJFQ.
GAO Bing, WANG Jin, ZHANG Xiaoyue, et al. Low-carbon economic dispatching of virtual power plant considering deep peak regulation of carbon capture units[J/OL]. Modern Electric Power, 2024: 1-8. (2024-03-08) [2024-12-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XDDL20240304001&dbname=CJFD&dbcode=CJFQ.
[23]
张程, 罗玉锦, 陈昌亮. 考虑源荷不确定的多园区微网与共享储能电站协同优化运行[J]. 电力系统保护与控制, 2023, 51(24): 77-89.
ZHANG Cheng, LUO Yujin, CHEN Changliang. Collaborative optimization operation of multi park microgrids and shared energy storage power stations considering source load uncertainty[J]. Power System Protection and Control, 2023, 51(24): 77-89.
[24]
曹敬, 金玉龙, 郑涛, 等. 计及分布式电源集群不确定性的配电网分散鲁棒电压控制[J]. 电力系统保护与控制, 2023, 51(22): 155-166.
CAO Jing, JIN Yulong, ZHENG Tao, et al. A decentralized robust voltage control method for distribution networks considering the uncertainty of distributed generation clusters[J]. Power System Protection and Control, 2023, 51(22): 155-166.
[25]
毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J]. 电力系统保护与控制, 2023, 51(12): 122-132.
BI Rui, WANG Xiaogan, YUAN Huakai, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power System Protection and Control, 2023, 51(12): 122-132.
[26]
刘蓉晖, 王乐凯, 孙改平, 等. 考虑不确定性的风-光-储合作联盟参与含需求响应的主辅联合市场的竞价交易模型[J]. 电力系统保护与控制, 2023, 51(11): 96-107.
LIU Ronghui, WANG Lekai, SUN Gaiping, et al. Bidding transaction model of wind-solar-storage cooperative alliance participating in the main and auxiliary joint market with demand response considering uncertainty[J]. Power System Protection and Control, 2023, 51(11): 96-107.
[27]
WU X M, XIONG H Z, LI S Y, et al. Improved light robust optimization strategy for virtual power plant operations with fluctuating demand[J]. IEEE Access, 2023, 11: 53195-53206.
[28]
WU S R, LIN J, LI J R, et al. Multi-timescale trading strategy for renewable power to ammonia virtual power plant in the electricity, hydrogen, and ammonia markets[J]. IEEE Transactions on Energy Markets, Policy and Regulation, 2023, 1(4): 322-335.
[29]
WANG S Y, WU W C, CHEN Q Z, et al. Stochastic flexibility evaluation for virtual power plants by aggregating distributed energy resources[J]. CSEE Journal of Power and Energy Systems, 2024, 10(3): 988-999.
[30]
YAO M G, MORADI Z, PIROUZI S, et al. Stochastic economic operation of coupling unit of flexi-renewable virtual power plant and electric spring in the smart distribution network[J]. IEEE Access, 2023, 11: 75979-75992.
[31]
WANG H, JIA Y W, LAI C S, et al. Optimal virtual power plant operational regime under reserve uncertainty[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2973-2985.
[32]
GU N, CUI J S, WU C Y. An auto-tuned robust dispatch strategy for virtual power plants to provide multi-stage real-time balancing service[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4494-4507.
[33]
SABERI H, ZHANG C, DONG Z Y. Capacity of virtual energy storage system for frequency regulation services via a data-driven distributionally robust optimization method[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2134-2147.
[34]
俞鸿飞, 王韵楚, 吕瑞扬, 等. 考虑灵活爬坡产品的虚拟电厂两阶段分布鲁棒优化运营策略[J]. 电力系统自动化, 2024, 48(14): 16-27.
YU Hongfei, WANG Yunchu, Ruiyang, et al. Two-stage distributionally robust optimization operation strategy of virtual power plants considering flexible ramping products[J]. Automation of Electric Power Systems, 2024, 48(14): 16-27.
[35]
何鑫, 刘俊勇, 高红均, 等. 计及光伏不确定性和低碳需求响应的工业园区光-储分布鲁棒规划模型[J]. 智慧电力, 2023, 51(2): 69-76.
HE Xin, LIU Junyong, GAO Hongjun, et al. Photovoltaic-energy storage distributed robust planning model for industrial parks considering photovoltaic uncertainty and low-carbon demand response[J]. Smart Power, 2023, 51(2): 69-76.

基金

国家自然科学基金项目(52307123)

编辑: 景贺峰
PDF(1719 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/