基于CVaR的虚拟电厂与电动汽车主从博弈策略

马乾鑫, 加鹤萍, 郭宇辰, 李培军, 杨烨, 刘敦楠, 赵振宇

电力建设 ›› 2025, Vol. 46 ›› Issue (7) : 53-66.

PDF(3573 KB)
PDF(3573 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (7) : 53-66. DOI: 10.12204/j.issn.1000-7229.2025.07.005
虚拟电厂群体智能运行与优化控制·栏目主持:高扬、尚策、胡枭、夏元兴、郑晓东、杨楠·

基于CVaR的虚拟电厂与电动汽车主从博弈策略

作者信息 +

Stackelberg Game Optimization Strategy of Virtual Power Plants and Electric Vehicles Based on Conditional Value-at-Risk

Author information +
文章历史 +

摘要

【目的】 随着规模化电动汽车(electric vehicle,EV)的发展,其大规模接入对电网运行带来新的挑战,亟待充分挖掘电动汽车的灵活调节能力,以提升电网运行的安全性与经济性。虚拟电厂(virtual power plant, VPP)作为聚合多类分布式资源的高效模式,为EV参与电网运行提供了新的解决方案,文章提出了基于条件风险价值(conditional value at risk ,CVaR)的虚拟电厂与电动汽车主从博弈优化策略。【方法】 文章构建包含VPP与EV两层决策主体的Stackelberg博弈模型。上层以VPP收益最大化为目标,引入CVaR理论,量化并规避由EV充放电不确定性引发的风险,制定风险感知的充放电服务价格;下层以EV用户充放电成本最小为目标,引入包含成本满意度与体验满意度的效用函数,刻画EV用户响应行为。【结果】 通过设置含光伏、风电、储能和300辆EV的VPP系统,开展数值仿真与多场景对比分析,验证了所提策略在降低负荷峰谷差、降低EV用户平均充放电成本以及提升VPP收益稳定性方面的有效性,具备较强的工程适用性。【结论】 所提基于CVaR的VPP与EV主从博弈策略能够兼顾电网调控需求与用户行为偏好,在复杂不确定环境下实现多方利益协调,提升系统的经济性与稳定性。研究结果为电动汽车参与电力市场交易与虚拟电厂风险管理提供了可行的方法参考。

Abstract

[Objective] The large-scale integration of electric vehicles (EVs) presents potential flexibility and operational uncertainty in power systems. Virtual power plants (VPPs), as efficient paradigms for aggregating distributed energy resources, offer a feasible approach for coordinating EV participation in grid operations. This study proposed a bi-level optimization strategy based on a Stackelberg game to manage the interaction between VPPs and EV users under uncertainty.[Methods] A bi-level Stackelberg game model was developed in which the VPP acts as the leader and the EV users as followers. The upper-level model maximized the VPP profit while managing EV-related uncertainties via the conditional value at risk (CVaR). It sets risk-aware charging and discharging prices. The lower-level model minimized user costs by responding to these prices using a utility function that captures both cost satisfaction and charging experience. A particle swarm optimization algorithm was employed to solve the coupled model and identify the equilibrium strategies.[Results] A case study of a VPP system with wind, solar, storage, and 300 EVs demonstrated the effectiveness of the proposed approach. Compared to benchmark strategies, the model reduced the peak-valley load gap by up to 36.9%, lowered the average user cost by 28.79%, and enhanced profit stability under uncertainty.[Conclusions] The CVaR-based bi-level game framework effectively balances the VPP profit, EV user satisfaction, and system stability. It provides a risk-aware, market-oriented approach for flexible resource management and offers practical insights into future EV-grid integration strategies.

关键词

虚拟电厂(VPP) / 电动汽车(EV) / 主从博弈 / 条件风险价值(CVaR) / 效用函数

Key words

virtual power plant (VPP) / electric vehicle (EV) / Stackelberg game / conditional value at risk(CVaR) / utility function

引用本文

导出引用
马乾鑫, 加鹤萍, 郭宇辰, . 基于CVaR的虚拟电厂与电动汽车主从博弈策略[J]. 电力建设. 2025, 46(7): 53-66 https://doi.org/10.12204/j.issn.1000-7229.2025.07.005
MA Qianxin, JIA Heping, GUO Yuchen, et al. Stackelberg Game Optimization Strategy of Virtual Power Plants and Electric Vehicles Based on Conditional Value-at-Risk[J]. Electric Power Construction. 2025, 46(7): 53-66 https://doi.org/10.12204/j.issn.1000-7229.2025.07.005
中图分类号: TM73;TM76   

参考文献

[1]
XUE Y S. Active support of power system to energy transition[J]. Engineering, 2021, 7(8): 1035-1036.
[2]
FENG B, LIU Z P, HUANG G, et al. Robust federated deep reinforcement learning for optimal control in multiple virtual power plants with electric vehicles[J]. Applied Energy, 2023, 349: 121615.
[3]
马继洋, 蔡永翔, 唐巍, 等. 考虑电动汽车参与韧性提升的配电网状态平滑切换控制策略[J]. 电力建设, 2024, 45(5): 29-36.
摘要
在极端灾害发生后电动汽车(electric vehicle,EV)可作为移动电源给负荷供电,从而支撑配电网韧性提升。针对配电网故障发生不可预见、正常态和故障态调度模型切换导致调度指令不稳定问题,文章研究了运行状态平滑切换的EV参与配电网韧性提升策略。基于EV状态和连接方式的二进制变量建立线性化EV时空动态模型,能适应EV灵活调度算力大的需求。考虑EV和交通网不确定性因素,建立基于交通网和配电网信息实时滚动更新的正常态和故障态统一调度模型,正常态以经济性和韧性最优为目标,故障态以韧性最优为目标,通过引入状态表征参数实现两种状态间平滑切换。算例仿真表明,该策略在不影响精度的情况下显著降低了计算量,有助于实现配电网最优韧性恢复和状态平稳过渡。
MA Jiyang, CAI Yongxiang, TANG Wei, et al. Enhancing distribution network resilience: electric vehicle integration in seamless state switching strategy[J]. Electric Power Construction, 2024, 45(5): 29-36.

In the aftermath of extreme disasters, electric vehicles (EV) can serve as mobile power sources, bolstering the resilience of distribution networks by supplying power to critical loads. To address the challenge of dispatching instruction instability stemming from unforeseeable faults, alongside the need for seamless switching between normal and fault state scheduling models in distribution networks, this study explores the integration of EVs into resilience enhancement strategies, with smooth switching of the running state. Based on the normalization of binary variables representing the EV state and connection mode, a linearized EV spatiotemporal dynamic model is developed, meeting the power requirements for large flexible EV scheduling computations. Considering the uncertainty factors inherent in EVs and transportation networks, a unified scheduling model encompassing both normal and fault states is formulated. This model relies on real-time rolling updates of information from both the transportation and distribution networks. In the normal state, the objective is to optimize economy and resilience, while the fault state aims at solely optimizing resilience. The seamless switching between these two states is realized through the introduction of state characterization parameters. The simulation results demonstrate that the proposed strategy significantly reduces computational overhead without compromising accuracy, thereby facilitating optimal resilience recovery and smooth transitions within the distribution network.

[4]
裴振坤, 王学梅, 康龙云. 电动汽车参与电网辅助服务的控制策略综述[J]. 电力系统自动化, 2023, 47(18): 17-32.
PEI Zhenkun, WANG Xuemei, KANG Longyun. Review on control strategies for electric vehicles participating in ancillary services of power grid[J]. Automation of Electric Power Systems, 2023, 47(18): 17-32.
[5]
刘亚鑫, 蔺红. 计及碳交易与条件风险值的虚拟电厂竞价策略[J]. 电力工程技术, 2023, 42(6): 179-188.
LIU Yaxin, LIN Hong. Bidding strategy of virtual power plant considering carbon trading and conditional value at risk[J]. Electric Power Engineering Technology, 2023, 42(6): 179-188.
[6]
王宏, 宋禹飞, 刘润鹏, 等. 虚拟电厂标准化现状与需求分析[J]. 浙江电力, 2024, 43(5): 1-9.
WANG Hong, SONG Yufei, LIU Runpeng, et al. Current status and demand analysis of virtual power plant standardization[J]. Zhejiang Electric Power, 2024, 43(5): 1-9.
[7]
杨力帆, 周鲲, 齐增清, 等. 基于需求响应的虚拟电厂多时间尺度优化调度[J]. 电网与清洁能源, 2024, 40(3): 10-21.
YANG Lifan, ZHOU Kun, QI Zengqing, et al. A multi-time scale optimal scheduling strategy of virtual power plants based on demand response[J]. Power System and Clean Energy, 2024, 40(3): 10-21.
[8]
董红召, 方雅秀, 付凤杰. 物联感知环境下电动汽车充电等待时间分布的预测方法[J]. 电力系统自动化, 2020, 44(9): 86-94.
DONG Hongzhao, FANG Yaxiu, FU Fengjie. Prediction method of charging waiting time distribution for electric vehicles in Internet of Things perception environment[J]. Automation of Electric Power Systems, 2020, 44(9): 86-94.
[9]
孔祥玉, 马玉莹, 艾芊, 等. 新型电力系统多元用户的用电特征建模与用电负荷预测综述[J]. 电力系统自动化, 2023, 47(13): 2-17.
KONG Xiangyu, MA Yuying, AI Qian, et al. Review on electricity consumption characteristic modeling and load forecasting for diverse users in new power system[J]. Automation of Electric Power Systems, 2023, 47(13): 2-17.
[10]
徐智威, 胡泽春, 宋永华, 等. 基于动态分时电价的电动汽车充电站有序充电策略[J]. 中国电机工程学报, 2014, 34(22): 3638-3646.
XU Zhiwei, HU Zechun, SONG Yonghua, et al. Coordinated charging strategy for PEV charging stations based on dynamic time-of-use tariffs[J]. Proceedings of the CSEE, 2014, 34(22): 3638-3646.
[11]
欧名勇, 陈仲伟, 谭玉东, 等. 基于峰谷分时电价引导下的电动汽车充电负荷优化[J]. 电力科学与技术学报, 2020, 35(5): 54-59.
OU Mingyong, CHEN Zhongwei, TAN Yudong, et al. Optimization of electric vehicle charging load based on peak-to-valley time-of-use electricity price[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 54-59.
[12]
玉少华, 杜兆斌, 陈丽丹, 等. 融合路网-电网信息的电动汽车充放电行为引导与调控策略[J]. 电力系统自动化, 2024, 48(7): 169-180.
YU Shaohua, DU Zhaobin, CHEN Lidan, et al. Guidance and regulation strategy for charging and discharging behaviors of electric vehicles based on fusion of road network and power grid information[J]. Automation of Electric Power Systems, 2024, 48(7): 169-180.
[13]
侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46(15): 46-55.
HOU Hui, TANG Junyi, WANG Yifan, et al. Long-time-scale charging and discharging scheduling of electric vehicles under joint price and incentive demand response[J]. Automation of Electric Power Systems, 2022, 46(15): 46-55.
[14]
袁晓冬, 甘海庆, 王明深, 等. 车联网环境下电动汽车主动充电引导模型[J]. 电力系统自动化, 2024, 48(7): 159-168.
YUAN Xiaodong, GAN Haiqing, WANG Mingshen, et al. Active charging guidance model of electric vehicles based on internet of vehicles[J]. Automation of Electric Power Systems, 2024, 48(7): 159-168.
[15]
SUN Q, FU Y, LIN H Y, et al. A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties[J]. Applied Energy, 2022, 314: 119002.
[16]
张高, 王旭, 蒋传文. 基于主从博弈的含电动汽车虚拟电厂协调调度[J]. 电力系统自动化, 2018, 42(11): 48-55.
ZHANG Gao, WANG Xu, JIANG Chuanwen. Stackelberg game based coordinated dispatch of virtual power plant considering electric vehicle management[J]. Automation of Electric Power Systems, 2018, 42(11): 48-55.
[17]
李媛, 冯昌森, 文福拴, 等. 含电动汽车和电转气的园区能源互联网能源定价与管理[J]. 电力系统自动化, 2018, 42(16): 1-10.
LI Yuan, FENG Changsen, WEN Fushuan, et al. Energy pricing and management for park-level energy internets with electric vehicles and power-to-gas devices[J]. Automation of Electric Power Systems, 2018, 42(16): 1-10.
[18]
邱革非, 何超, 骆钊, 等. 考虑新能源消纳及需求响应不确定性的配电网主从博弈经济调度[J]. 电力自动化设备, 2021, 41(6): 66-74.
QIU Gefei, HE Chao, LUO Zhao, et al. Economic dispatch of Stackelberg game in distribution network considering new energy consumption and uncertainty of demand response[J]. Electric Power Automation Equipment, 2021, 41(6): 66-74.
[19]
谭忠富, 谭彩霞, 蒲雷, 等. 基于协同免疫量子粒子群优化算法的虚拟电厂双层博弈模型[J]. 电力建设, 2020, 41(6): 9-17.
摘要
为了充分利用电动汽车(electric vehicle,EV)大规模的储能优势与代理聚合商在电力市场灵活购售电优势,以此弥补虚拟电厂(virtual power plant,VPP)内部供需不平衡情况,构建电动汽车参与的虚拟电厂双层博弈模型,对虚拟电厂同时进行内外部优化。首先,构建上层代理聚合商虚拟电厂完全信息动态博弈模型进行虚拟电厂外部优化;其次,构建虚拟电厂电动汽车聚合商合作博弈模型进行虚拟电厂内部优化,并利用改进的Shapley值分配虚拟电厂与电动汽车聚合商的合作收益;最后,以集成风电机组、可控负荷、储能电池、用户、电动汽车的虚拟电厂进行算例分析,采取协同免疫量子粒子群优化(coevolutionary immune quantum partical swarm optimization,CIQPSO)算法搜寻最优解。算例结果表明,电动汽车参与虚拟电厂能够同时提高两者的经济效益,提高虚拟电厂内部供需平衡能力。
TAN Zhongfu, TAN Caixia, PU Lei, et al. Two-layer game model of virtual power plant applying CIQPSO algorithm[J]. Electric Power Construction, 2020, 41(6): 9-17.
In order to make full use of the large-scale energy-storage advantages of electric vehicles (EVs) and the advantages of agent aggregators to flexibly purchase and sell electricity in the power market, to make up for the imbalance between supply and demand in virtual power plant (VPP), this paper constructs a two-layer game model of a virtual power plant in which electric vehicles participate, to perform internal and external optimization of the virtual power plant at the same time. On this basis, firstly, a fully dynamic game model of the upper-level agent aggregator - virtual power plant is constructed to perform external optimization of the virtual power plant. Secondly, a virtual power plant - electric vehicle aggregator cooperation game model is built to optimize the virtual power plant internals, and the improved Shapley value is used to allocate the cooperation revenue between the virtual power plant and the electric vehicle aggregator. Finally, a virtual power plant with integrated wind turbines, controllable loads, energy storage batteries, users, and electric vehicles is used to analyze the example. The coevolutionary immune quantum partical swarm optimization (CIQPSO) algorithm is used to search for the optimal solution. The results of a numerical example show that the participation of electric vehicles in a virtual power plant can simultaneously improve the both economic benefits  and increase the supply-demand balance capability of the virtual power plant.
[20]
邓衍辉, 李剑, 卢国强, 等. 考虑分区域动态电价机制引导的电动汽车充电优化策略[J]. 电力系统保护与控制, 2024, 52(7): 33-44.
DENG Yanhui, LI Jian, LU Guoqiang, et al. Charging optimization strategy of electric vehicles guided by the dynamic tariff mechanism of a subregion[J]. Power System Protection and Control, 2024, 52(7): 33-44.
[21]
王帅, 帅轩越, 王智冬, 等. 基于纳什议价方法的虚拟电厂分布式多运营主体电能交易机制[J]. 电力建设, 2022, 43(3): 141-148.
摘要
伴随着电力市场售电侧的日益开放化,虚拟电厂(virtual power plant, VPP)内不同利益体可通过电能交易提高经济效益。首先,文章针对包含分布式电源的运营商(distributed generation operator,DGO)、云储能运营商(cloud energy storage operator,CESO)以及产消者聚合商(prosumer aggregator,PA)等多种运营主体的虚拟电厂,提出基于合作博弈的多运营主体间电能交易机制,实现VPP总运行成本最小。其次,以各运营主体单独与配电网交易的运行成本作为谈判破裂点,利用纳什议价方法求解各运营主体间的电能交易量与收益转移,维持各运营主体参与合作的积极性。考虑到纳什议价模型的非凸性与各运营主体的隐私安全,将议价均衡问题转换为两个凸的子问题,并采用交替方向乘子法(alternating direction method of multipliers,ADMM)进行求解。最后,通过算例仿真进一步验证了所提方法能有效减少各运营主体的运行成本,为VPP内电能交易机制的设计提供了参考方案。
WANG Shuai, SHUAI Xuanyue, WANG Zhidong, et al. Distributed electricity trading mechanism of multi-operator virtual power plant based on Nash bargaining method[J]. Electric Power Construction, 2022, 43(3): 141-148.

With the power market sales side increasingly open, different stakeholders in virtual power plants (VPP) can increase economic benefits through electricity trading. Firstly, for a type of VPP that includes multiple operating entities such as distributed new energy operator, energy storage operator, and aggregator of prosumers, a cooperative game-based energy trading mechanism among multiple operating entities is proposed in this paper, and the total operating cost of VPP is minimized. Secondly, taking the operating cost of each operating entity’s separate transaction with the distribution network as the breakdown point of the negotiation, the Nash bargaining method is used to solve the electricity transaction volume and revenue transfer among various operating entities, so as to maintain the enthusiasm of each operating entity to participate in the cooperation. Taking into account the non-convexity of the Nash bargaining model and the privacy security of each operating entity, the bargaining equilibrium problem is converted into two convex sub-problems, and the ADMM algorithm is used to solve them. Finally, a simulation example further verifies that the proposed method can effectively reduce the operating cost of each operating entity, and provides a reference scheme for the design of the electricity transaction mechanism in VPP.

[22]
李嘉媚, 艾芊. 考虑调峰辅助服务的虚拟电厂运营模式[J]. 电力自动化设备, 2021, 41(6): 1-13.
LI Jiamei, AI Qian. Operation mode of virtual power plant considering peak regulation auxiliary service[J]. Electric Power Automation Equipment, 2021, 41(6): 1-13.
[23]
CHEN Y, NIU Y G, QU C Z, et al. Data-driven-based distributionally robust optimization approach for a virtual power plant considering the responsiveness of electric vehicles and Ladder-type carbon trading[J]. International Journal of Electrical Power & Energy Systems, 2024, 157: 109893.
[24]
薛禹胜, 吴巨爱, 谢东亮, 等. 关于在决策推演中计入博弈行为的评述[J]. 电力系统自动化, 2023, 47(16): 1-9.
XUE Yusheng, WU Juai, XIE Dongliang, et al. Review on considering gaming behaviors in decision-making simulation deduction[J]. Automation of Electric Power Systems, 2023, 47(16): 1-9.
[25]
刘东奇, 钟庆昌, 王耀南, 等. 基于同步逆变器的电动汽车V2G智能充放电控制技术[J]. 中国电机工程学报, 2017, 37(2): 544-557.
LIU Dongqi, ZHONG Qingchang, WANG Yaonan, et al. A synchronverter-based V2G smart charging and discharging control strategy for electric vehicles[J]. Proceedings of the CSEE, 2017, 37(2): 544-557.
[26]
马文帅, 胡俊杰, 房宇轩, 等. 电动汽车用户参与调控意愿的多代理表征与可信容量量化[J]. 电力系统自动化, 2023, 47(18): 122-131.
MA Wenshuai, HU Junjie, FANG Yuxuan, et al. Multi-agent representation for willingness of electric vehicle users to participate in regulation and quantification of reliable reserve capacity[J]. Automation of Electric Power Systems, 2023, 47(18): 122-131.
[27]
JIA H P, MA Q X, LI Y, et al. Integrating electric vehicles to power grids: a review on modeling, regulation, and market operation[J]. Energies, 2023, 16(17): 6151.
[28]
胡俊杰, 赖信辉, 郭伟, 等. 考虑电动汽车灵活性与风电消纳的区域电网多时间尺度调度[J]. 电力系统自动化, 2022, 46(16): 52-60.
HU Junjie, LAI Xinhui, GUO Wei, et al. Multi-time-scale scheduling for regional power grid considering flexibility of electric vehicle and wind power accommodation[J]. Automation of Electric Power Systems, 2022, 46(16): 52-60.
[29]
宋天琦, 吕志鹏, 宋振浩, 等. 虚拟电厂规模化灵活资源聚合调控框架研究与思考[J]. 中国电力, 2024, 57(1): 2-8.
SONG Tianqi, LV Zhipeng, SONG Zhenhao, et al. Research and thinking on the aggregation and dispatching control framework of virtual power plant’s large scale flexible resources[J]. Electric Power, 2024, 57(1): 2-8.
[30]
SPREI F, KEMPTON W. Mental models guide electric vehicle charging[J]. Energy, 2024, 292: 130430.
[31]
单俊嘉, 胡俊杰, 吴界辰. 面向虚拟电厂能量管理的点对点市场交易机制与模型[J]. 电网技术, 2020, 44(9): 3401-3408.
SHAN Junjia, HU Junjie, WU Jiechen. Peer-to-peer market trading mechanism and model for virtual power plant energy management[J]. Power System Technology, 2020, 44(9): 3401-3408.
[32]
蒋玮, 单沫文, 邓一帆, 等. 虚拟电厂聚合电动汽车参与碳市场的优化调度策略[J]. 电力工程技术, 2023, 42(4): 13-22, 240.
JIANG Wei, SHAN Mowen, DENG Yifan, et al. Optimization strategy for aggregating electric vehicles through VPP to participate in the carbon market[J]. Electric Power Engineering Technology, 2023, 42(4): 13-22, 240.
[33]
罗其华, 李平, 张少迪. 考虑需求响应和阶梯碳交易的虚拟电厂低碳经济调度[J]. 浙江电力, 2023, 42(6): 51-59.
LUO Qihua, LI Ping, ZHANG Shaodi. Low-carbon and economic scheduling of virtual power plant considering demand response and stepwise carbon trading[J]. Zhejiang Electric Power, 2023, 42(6): 51-59.
[34]
马永翔, 马少洁, 闫群民, 等. 虚拟电厂与电动汽车用户的主从博弈定价策略[J/OL]. 华北电力大学学报(自然科学版), 2023: 1-10. (2023-08-23)[2024-05-22]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html.
MA Yongxiang, MA Shaojie, YAN Qunmin, et al. Master-slave game pricing strategy between virtual power plants and electric vehicle users[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2023: 1-10. (2023-08-23) [2024-05-22]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html.
[35]
HAO Y, DONG L, LIANG J, et al. Power forecasting-based coordination dispatch of PV power generation and electric vehicles charging in microgrid[J]. Renewable Energy, 2020, 155: 1191-1210.
[36]
HU Z C, ZHAN K Q, ZHANG H C, et al. Pricing mechanisms design for guiding electric vehicle charging to fill load valley[J]. Applied Energy, 2016, 178: 155-163.
[37]
严欢, 胡俊杰, 黄旦莉, 等. 考虑电动汽车虚拟电厂灵活性和高比例光伏接入的配电网规划[J]. 电力建设, 2022, 43(11): 14-23.
摘要
以包含高比例光伏和规模化电动汽车(electric vehicle,EV)的配电网规划为研究对象,首先对电动汽车虚拟电厂进行灵活性量化,然后建立了综合考虑电动汽车虚拟电厂灵活性与高比例光伏接入的配电网规划模型。模型以配电网线路年综合投资成本最小为目标,同时兼顾新能源消纳、储能系统投资成本和电动汽车虚拟电厂灵活性补偿成本,以期在提升配电网规划经济性的同时实现电力系统“削峰填谷”,并提高光伏出力消纳率。最后以IEEE RTS-24节点配电网系统为例进行仿真验证,算例表明,所提规划模型利用储能系统和电动汽车灵活性降低了系统的规划运行成本,并提高了配电网内部光伏电站的消纳率,能够对未来包含高比例可再生能源和虚拟电厂灵活性资源的电力系统规划提供借鉴和参考。
YAN Huan, HU Junjie, HUANG Danli, et al. Distribution network planning considering the flexibility of EV virtual power plants and high penetration of PV[J]. Electric Power Construction, 2022, 43(11): 14-23.

This paper studies the distribution network planning problem which considers high proportion of photovoltaic power and large-scale electric vehicles (EVs). Firstly, the paper quantifies the flexibility of the EV virtual power plant, and then establishes a distribution network planning model that comprehensively considers the flexibility of the EV virtual power plant and the high proportion of photovoltaic access. The model aims to minimize the annual investment cost of distribution network lines, while taking into account renewable energy consumption, investment costs of energy storage system and flexibility compensation costs of EV virtual power plant, in order to improve the economy of distribution network planning and realize peak shaving and valley filling of power system and improve the photovoltaic output consumption rate. Finally, the IEEE 24-node distribution network system is taken as an example for simulation verification. The example shows that the planning model proposed in this paper uses the flexibility of the energy storage system and electric vehicles to reduce the planning and operation cost of the system and improves the consumption rate of the photovoltaic power station in the distribution network. The model can provide reference for future power system planning including high penetration of renewable energy and virtual power plant flexibility resources.

[38]
卫志农, 陈妤, 黄文进, 等. 考虑条件风险价值的虚拟电厂多电源容量优化配置模型[J]. 电力系统自动化, 2018, 42(4): 39-46.
WEI Zhinong, CHEN Yu, HUANG Wenjin, et al. Optimal allocation model for multi-energy capacity of virtual power plant considering conditional value-at-risk[J]. Automation of Electric Power Systems, 2018, 42(4): 39-46.
[39]
HE S J, GAO H J, CHEN Z, et al. Data-driven worst conditional value at risk energy management model of energy station[J]. Energy, 2023, 266: 126421.
[40]
罗干, 李觉友, 余季迟, 等. 基于Stackelberg博弈的微电网插入式电动汽车分布式充电控制[J]. 电力自动化设备, 2024, 44(2): 81-86, 102.
LUO Gan, LI Jueyou, YU Jichi, et al. Distributed charging control of plug-in electric vehicles in microgrid based on Stackelberg game[J]. Electric Power Automation Equipment, 2024, 44(2): 81-86, 102.
[41]
刘超, 李青, 马明明, 等. 基于DATA模型的电动汽车充电需求时空演化规律分析[J]. 电力系统自动化, 2023, 47(12): 86-94.
LIU Chao, LI Qing, MA Mingming, et al. Analysis on spatial-temporal evolution law of electric vehicle charging demand based on dynamic activity-travel assignment model[J]. Automation of Electric Power Systems, 2023, 47(12): 86-94.
[42]
姚丽娟, 蔡瑞天, 钱江, 等. 面向低碳园区供需平衡的混杂负荷系统聚合和控制模型构建[J]. 电网技术, 2023, 47(8): 3153-3166.
YAO Lijuan, CAI Ruitian, QIAN Jiang, et al. Aggregation and control model construction of hybrid load system for supply and demand balance in low-carbon zone[J]. Power System Technology, 2023, 47(8): 3153-3166.
[43]
王俊, 徐箭, 王晶晶, 等. 基于条件风险价值的虚拟电厂参与能量及备用市场的双层随机优化[J]. 电网技术, 2024, 48(6): 2502-2510.
WANG Jun, XU Jian, WANG Jingjing, et al. Bi-level stochastic optimization for a virtual power plant participating in energy and reserve market based on conditional value at risk[J]. Power System Technology, 2024, 48(6): 2502-2510.
[44]
JIN Y W, AMOASI ACQUAH M, SEO M, et al. Optimal EV scheduling and voltage security via an online bi-layer steady-state assessment method considering uncertainties[J]. Applied Energy, 2023, 347: 121356.
[45]
SCHWARZ M, AUZÉPY Q, KNOERI C. Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics[J]. Applied Energy, 2020, 277: 115548.
[46]
陈会来, 张海波, 王兆霖. 不同类型虚拟电厂市场及调度特性参数聚合算法研究综述[J]. 中国电机工程学报, 2023, 43(1): 15-28.
CHEN Huilai, ZHANG Haibo, WANG Zhaolin. A review of market and scheduling characteristic parameter aggregation algorithm of different types of virtual power plants[J]. Proceedings of the CSEE, 2023, 43(1): 15-28.
[47]
张虹, 王明晨, 尹世诚, 等. 考虑用户消费偏好的分散式电采暖系统主从博弈优化方法[J]. 电网技术, 2023, 47(6): 2262-2273.
ZHANG Hong, WANG Mingchen, YIN Shicheng, et al. Master-slave game optimization of decentralized electric-heating system considering user’s consumption preference[J]. Power System Technology, 2023, 47(6): 2262-2273.

基金

国家电网有限公司科技项目(5400-202427221A-1-1-ZN)

编辑: 景贺峰
PDF(3573 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/