PDF(3573 KB)
PDF(3573 KB)
PDF(3573 KB)
基于CVaR的虚拟电厂与电动汽车主从博弈策略
Stackelberg Game Optimization Strategy of Virtual Power Plants and Electric Vehicles Based on Conditional Value-at-Risk
【目的】 随着规模化电动汽车(electric vehicle,EV)的发展,其大规模接入对电网运行带来新的挑战,亟待充分挖掘电动汽车的灵活调节能力,以提升电网运行的安全性与经济性。虚拟电厂(virtual power plant, VPP)作为聚合多类分布式资源的高效模式,为EV参与电网运行提供了新的解决方案,文章提出了基于条件风险价值(conditional value at risk ,CVaR)的虚拟电厂与电动汽车主从博弈优化策略。【方法】 文章构建包含VPP与EV两层决策主体的Stackelberg博弈模型。上层以VPP收益最大化为目标,引入CVaR理论,量化并规避由EV充放电不确定性引发的风险,制定风险感知的充放电服务价格;下层以EV用户充放电成本最小为目标,引入包含成本满意度与体验满意度的效用函数,刻画EV用户响应行为。【结果】 通过设置含光伏、风电、储能和300辆EV的VPP系统,开展数值仿真与多场景对比分析,验证了所提策略在降低负荷峰谷差、降低EV用户平均充放电成本以及提升VPP收益稳定性方面的有效性,具备较强的工程适用性。【结论】 所提基于CVaR的VPP与EV主从博弈策略能够兼顾电网调控需求与用户行为偏好,在复杂不确定环境下实现多方利益协调,提升系统的经济性与稳定性。研究结果为电动汽车参与电力市场交易与虚拟电厂风险管理提供了可行的方法参考。
[Objective] The large-scale integration of electric vehicles (EVs) presents potential flexibility and operational uncertainty in power systems. Virtual power plants (VPPs), as efficient paradigms for aggregating distributed energy resources, offer a feasible approach for coordinating EV participation in grid operations. This study proposed a bi-level optimization strategy based on a Stackelberg game to manage the interaction between VPPs and EV users under uncertainty.[Methods] A bi-level Stackelberg game model was developed in which the VPP acts as the leader and the EV users as followers. The upper-level model maximized the VPP profit while managing EV-related uncertainties via the conditional value at risk (CVaR). It sets risk-aware charging and discharging prices. The lower-level model minimized user costs by responding to these prices using a utility function that captures both cost satisfaction and charging experience. A particle swarm optimization algorithm was employed to solve the coupled model and identify the equilibrium strategies.[Results] A case study of a VPP system with wind, solar, storage, and 300 EVs demonstrated the effectiveness of the proposed approach. Compared to benchmark strategies, the model reduced the peak-valley load gap by up to 36.9%, lowered the average user cost by 28.79%, and enhanced profit stability under uncertainty.[Conclusions] The CVaR-based bi-level game framework effectively balances the VPP profit, EV user satisfaction, and system stability. It provides a risk-aware, market-oriented approach for flexible resource management and offers practical insights into future EV-grid integration strategies.
虚拟电厂(VPP) / 电动汽车(EV) / 主从博弈 / 条件风险价值(CVaR) / 效用函数
virtual power plant (VPP) / electric vehicle (EV) / Stackelberg game / conditional value at risk(CVaR) / utility function
| [1] |
|
| [2] |
|
| [3] |
马继洋, 蔡永翔, 唐巍, 等. 考虑电动汽车参与韧性提升的配电网状态平滑切换控制策略[J]. 电力建设, 2024, 45(5): 29-36.
在极端灾害发生后电动汽车(electric vehicle,EV)可作为移动电源给负荷供电,从而支撑配电网韧性提升。针对配电网故障发生不可预见、正常态和故障态调度模型切换导致调度指令不稳定问题,文章研究了运行状态平滑切换的EV参与配电网韧性提升策略。基于EV状态和连接方式的二进制变量建立线性化EV时空动态模型,能适应EV灵活调度算力大的需求。考虑EV和交通网不确定性因素,建立基于交通网和配电网信息实时滚动更新的正常态和故障态统一调度模型,正常态以经济性和韧性最优为目标,故障态以韧性最优为目标,通过引入状态表征参数实现两种状态间平滑切换。算例仿真表明,该策略在不影响精度的情况下显著降低了计算量,有助于实现配电网最优韧性恢复和状态平稳过渡。
In the aftermath of extreme disasters, electric vehicles (EV) can serve as mobile power sources, bolstering the resilience of distribution networks by supplying power to critical loads. To address the challenge of dispatching instruction instability stemming from unforeseeable faults, alongside the need for seamless switching between normal and fault state scheduling models in distribution networks, this study explores the integration of EVs into resilience enhancement strategies, with smooth switching of the running state. Based on the normalization of binary variables representing the EV state and connection mode, a linearized EV spatiotemporal dynamic model is developed, meeting the power requirements for large flexible EV scheduling computations. Considering the uncertainty factors inherent in EVs and transportation networks, a unified scheduling model encompassing both normal and fault states is formulated. This model relies on real-time rolling updates of information from both the transportation and distribution networks. In the normal state, the objective is to optimize economy and resilience, while the fault state aims at solely optimizing resilience. The seamless switching between these two states is realized through the introduction of state characterization parameters. The simulation results demonstrate that the proposed strategy significantly reduces computational overhead without compromising accuracy, thereby facilitating optimal resilience recovery and smooth transitions within the distribution network. |
| [4] |
裴振坤, 王学梅, 康龙云. 电动汽车参与电网辅助服务的控制策略综述[J]. 电力系统自动化, 2023, 47(18): 17-32.
|
| [5] |
刘亚鑫, 蔺红. 计及碳交易与条件风险值的虚拟电厂竞价策略[J]. 电力工程技术, 2023, 42(6): 179-188.
|
| [6] |
王宏, 宋禹飞, 刘润鹏, 等. 虚拟电厂标准化现状与需求分析[J]. 浙江电力, 2024, 43(5): 1-9.
|
| [7] |
杨力帆, 周鲲, 齐增清, 等. 基于需求响应的虚拟电厂多时间尺度优化调度[J]. 电网与清洁能源, 2024, 40(3): 10-21.
|
| [8] |
董红召, 方雅秀, 付凤杰. 物联感知环境下电动汽车充电等待时间分布的预测方法[J]. 电力系统自动化, 2020, 44(9): 86-94.
|
| [9] |
孔祥玉, 马玉莹, 艾芊, 等. 新型电力系统多元用户的用电特征建模与用电负荷预测综述[J]. 电力系统自动化, 2023, 47(13): 2-17.
|
| [10] |
徐智威, 胡泽春, 宋永华, 等. 基于动态分时电价的电动汽车充电站有序充电策略[J]. 中国电机工程学报, 2014, 34(22): 3638-3646.
|
| [11] |
欧名勇, 陈仲伟, 谭玉东, 等. 基于峰谷分时电价引导下的电动汽车充电负荷优化[J]. 电力科学与技术学报, 2020, 35(5): 54-59.
|
| [12] |
玉少华, 杜兆斌, 陈丽丹, 等. 融合路网-电网信息的电动汽车充放电行为引导与调控策略[J]. 电力系统自动化, 2024, 48(7): 169-180.
|
| [13] |
侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46(15): 46-55.
|
| [14] |
袁晓冬, 甘海庆, 王明深, 等. 车联网环境下电动汽车主动充电引导模型[J]. 电力系统自动化, 2024, 48(7): 159-168.
|
| [15] |
|
| [16] |
张高, 王旭, 蒋传文. 基于主从博弈的含电动汽车虚拟电厂协调调度[J]. 电力系统自动化, 2018, 42(11): 48-55.
|
| [17] |
李媛, 冯昌森, 文福拴, 等. 含电动汽车和电转气的园区能源互联网能源定价与管理[J]. 电力系统自动化, 2018, 42(16): 1-10.
|
| [18] |
邱革非, 何超, 骆钊, 等. 考虑新能源消纳及需求响应不确定性的配电网主从博弈经济调度[J]. 电力自动化设备, 2021, 41(6): 66-74.
|
| [19] |
谭忠富, 谭彩霞, 蒲雷, 等. 基于协同免疫量子粒子群优化算法的虚拟电厂双层博弈模型[J]. 电力建设, 2020, 41(6): 9-17.
为了充分利用电动汽车(electric vehicle,EV)大规模的储能优势与代理聚合商在电力市场灵活购售电优势,以此弥补虚拟电厂(virtual power plant,VPP)内部供需不平衡情况,构建电动汽车参与的虚拟电厂双层博弈模型,对虚拟电厂同时进行内外部优化。首先,构建上层代理聚合商虚拟电厂完全信息动态博弈模型进行虚拟电厂外部优化;其次,构建虚拟电厂电动汽车聚合商合作博弈模型进行虚拟电厂内部优化,并利用改进的Shapley值分配虚拟电厂与电动汽车聚合商的合作收益;最后,以集成风电机组、可控负荷、储能电池、用户、电动汽车的虚拟电厂进行算例分析,采取协同免疫量子粒子群优化(coevolutionary immune quantum partical swarm optimization,CIQPSO)算法搜寻最优解。算例结果表明,电动汽车参与虚拟电厂能够同时提高两者的经济效益,提高虚拟电厂内部供需平衡能力。
In order to make full use of the large-scale energy-storage advantages of electric vehicles (EVs) and the advantages of agent aggregators to flexibly purchase and sell electricity in the power market, to make up for the imbalance between supply and demand in virtual power plant (VPP), this paper constructs a two-layer game model of a virtual power plant in which electric vehicles participate, to perform internal and external optimization of the virtual power plant at the same time. On this basis, firstly, a fully dynamic game model of the upper-level agent aggregator - virtual power plant is constructed to perform external optimization of the virtual power plant. Secondly, a virtual power plant - electric vehicle aggregator cooperation game model is built to optimize the virtual power plant internals, and the improved Shapley value is used to allocate the cooperation revenue between the virtual power plant and the electric vehicle aggregator. Finally, a virtual power plant with integrated wind turbines, controllable loads, energy storage batteries, users, and electric vehicles is used to analyze the example. The coevolutionary immune quantum partical swarm optimization (CIQPSO) algorithm is used to search for the optimal solution. The results of a numerical example show that the participation of electric vehicles in a virtual power plant can simultaneously improve the both economic benefits and increase the supply-demand balance capability of the virtual power plant.
|
| [20] |
邓衍辉, 李剑, 卢国强, 等. 考虑分区域动态电价机制引导的电动汽车充电优化策略[J]. 电力系统保护与控制, 2024, 52(7): 33-44.
|
| [21] |
王帅, 帅轩越, 王智冬, 等. 基于纳什议价方法的虚拟电厂分布式多运营主体电能交易机制[J]. 电力建设, 2022, 43(3): 141-148.
伴随着电力市场售电侧的日益开放化,虚拟电厂(virtual power plant, VPP)内不同利益体可通过电能交易提高经济效益。首先,文章针对包含分布式电源的运营商(distributed generation operator,DGO)、云储能运营商(cloud energy storage operator,CESO)以及产消者聚合商(prosumer aggregator,PA)等多种运营主体的虚拟电厂,提出基于合作博弈的多运营主体间电能交易机制,实现VPP总运行成本最小。其次,以各运营主体单独与配电网交易的运行成本作为谈判破裂点,利用纳什议价方法求解各运营主体间的电能交易量与收益转移,维持各运营主体参与合作的积极性。考虑到纳什议价模型的非凸性与各运营主体的隐私安全,将议价均衡问题转换为两个凸的子问题,并采用交替方向乘子法(alternating direction method of multipliers,ADMM)进行求解。最后,通过算例仿真进一步验证了所提方法能有效减少各运营主体的运行成本,为VPP内电能交易机制的设计提供了参考方案。
With the power market sales side increasingly open, different stakeholders in virtual power plants (VPP) can increase economic benefits through electricity trading. Firstly, for a type of VPP that includes multiple operating entities such as distributed new energy operator, energy storage operator, and aggregator of prosumers, a cooperative game-based energy trading mechanism among multiple operating entities is proposed in this paper, and the total operating cost of VPP is minimized. Secondly, taking the operating cost of each operating entity’s separate transaction with the distribution network as the breakdown point of the negotiation, the Nash bargaining method is used to solve the electricity transaction volume and revenue transfer among various operating entities, so as to maintain the enthusiasm of each operating entity to participate in the cooperation. Taking into account the non-convexity of the Nash bargaining model and the privacy security of each operating entity, the bargaining equilibrium problem is converted into two convex sub-problems, and the ADMM algorithm is used to solve them. Finally, a simulation example further verifies that the proposed method can effectively reduce the operating cost of each operating entity, and provides a reference scheme for the design of the electricity transaction mechanism in VPP. |
| [22] |
李嘉媚, 艾芊. 考虑调峰辅助服务的虚拟电厂运营模式[J]. 电力自动化设备, 2021, 41(6): 1-13.
|
| [23] |
|
| [24] |
薛禹胜, 吴巨爱, 谢东亮, 等. 关于在决策推演中计入博弈行为的评述[J]. 电力系统自动化, 2023, 47(16): 1-9.
|
| [25] |
刘东奇, 钟庆昌, 王耀南, 等. 基于同步逆变器的电动汽车V2G智能充放电控制技术[J]. 中国电机工程学报, 2017, 37(2): 544-557.
|
| [26] |
马文帅, 胡俊杰, 房宇轩, 等. 电动汽车用户参与调控意愿的多代理表征与可信容量量化[J]. 电力系统自动化, 2023, 47(18): 122-131.
|
| [27] |
|
| [28] |
胡俊杰, 赖信辉, 郭伟, 等. 考虑电动汽车灵活性与风电消纳的区域电网多时间尺度调度[J]. 电力系统自动化, 2022, 46(16): 52-60.
|
| [29] |
宋天琦, 吕志鹏, 宋振浩, 等. 虚拟电厂规模化灵活资源聚合调控框架研究与思考[J]. 中国电力, 2024, 57(1): 2-8.
|
| [30] |
|
| [31] |
单俊嘉, 胡俊杰, 吴界辰. 面向虚拟电厂能量管理的点对点市场交易机制与模型[J]. 电网技术, 2020, 44(9): 3401-3408.
|
| [32] |
蒋玮, 单沫文, 邓一帆, 等. 虚拟电厂聚合电动汽车参与碳市场的优化调度策略[J]. 电力工程技术, 2023, 42(4): 13-22, 240.
|
| [33] |
罗其华, 李平, 张少迪. 考虑需求响应和阶梯碳交易的虚拟电厂低碳经济调度[J]. 浙江电力, 2023, 42(6): 51-59.
|
| [34] |
马永翔, 马少洁, 闫群民, 等. 虚拟电厂与电动汽车用户的主从博弈定价策略[J/OL]. 华北电力大学学报(自然科学版), 2023: 1-10. (2023-08-23)[2024-05-22]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html.
|
| [35] |
|
| [36] |
|
| [37] |
严欢, 胡俊杰, 黄旦莉, 等. 考虑电动汽车虚拟电厂灵活性和高比例光伏接入的配电网规划[J]. 电力建设, 2022, 43(11): 14-23.
以包含高比例光伏和规模化电动汽车(electric vehicle,EV)的配电网规划为研究对象,首先对电动汽车虚拟电厂进行灵活性量化,然后建立了综合考虑电动汽车虚拟电厂灵活性与高比例光伏接入的配电网规划模型。模型以配电网线路年综合投资成本最小为目标,同时兼顾新能源消纳、储能系统投资成本和电动汽车虚拟电厂灵活性补偿成本,以期在提升配电网规划经济性的同时实现电力系统“削峰填谷”,并提高光伏出力消纳率。最后以IEEE RTS-24节点配电网系统为例进行仿真验证,算例表明,所提规划模型利用储能系统和电动汽车灵活性降低了系统的规划运行成本,并提高了配电网内部光伏电站的消纳率,能够对未来包含高比例可再生能源和虚拟电厂灵活性资源的电力系统规划提供借鉴和参考。
This paper studies the distribution network planning problem which considers high proportion of photovoltaic power and large-scale electric vehicles (EVs). Firstly, the paper quantifies the flexibility of the EV virtual power plant, and then establishes a distribution network planning model that comprehensively considers the flexibility of the EV virtual power plant and the high proportion of photovoltaic access. The model aims to minimize the annual investment cost of distribution network lines, while taking into account renewable energy consumption, investment costs of energy storage system and flexibility compensation costs of EV virtual power plant, in order to improve the economy of distribution network planning and realize peak shaving and valley filling of power system and improve the photovoltaic output consumption rate. Finally, the IEEE 24-node distribution network system is taken as an example for simulation verification. The example shows that the planning model proposed in this paper uses the flexibility of the energy storage system and electric vehicles to reduce the planning and operation cost of the system and improves the consumption rate of the photovoltaic power station in the distribution network. The model can provide reference for future power system planning including high penetration of renewable energy and virtual power plant flexibility resources. |
| [38] |
卫志农, 陈妤, 黄文进, 等. 考虑条件风险价值的虚拟电厂多电源容量优化配置模型[J]. 电力系统自动化, 2018, 42(4): 39-46.
|
| [39] |
|
| [40] |
罗干, 李觉友, 余季迟, 等. 基于Stackelberg博弈的微电网插入式电动汽车分布式充电控制[J]. 电力自动化设备, 2024, 44(2): 81-86, 102.
|
| [41] |
刘超, 李青, 马明明, 等. 基于DATA模型的电动汽车充电需求时空演化规律分析[J]. 电力系统自动化, 2023, 47(12): 86-94.
|
| [42] |
姚丽娟, 蔡瑞天, 钱江, 等. 面向低碳园区供需平衡的混杂负荷系统聚合和控制模型构建[J]. 电网技术, 2023, 47(8): 3153-3166.
|
| [43] |
王俊, 徐箭, 王晶晶, 等. 基于条件风险价值的虚拟电厂参与能量及备用市场的双层随机优化[J]. 电网技术, 2024, 48(6): 2502-2510.
|
| [44] |
|
| [45] |
|
| [46] |
陈会来, 张海波, 王兆霖. 不同类型虚拟电厂市场及调度特性参数聚合算法研究综述[J]. 中国电机工程学报, 2023, 43(1): 15-28.
|
| [47] |
张虹, 王明晨, 尹世诚, 等. 考虑用户消费偏好的分散式电采暖系统主从博弈优化方法[J]. 电网技术, 2023, 47(6): 2262-2273.
|
AI小编
/
| 〈 |
|
〉 |