电力用户的有限理性行为研究综述与展望

甘磊, 张鹏, 朱琳, 杨天禹, 陈星莺, 华昊辰, 余昆

电力建设 ›› 2025, Vol. 46 ›› Issue (7) : 67-81.

PDF(4553 KB)
PDF(4553 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (7) : 67-81. DOI: 10.12204/j.issn.1000-7229.2025.07.006
智能微电网海量分布式灵活资源协调优化·栏目主持:张犁、Ahmed Zobaa、Heba Sharaf、赫玉莹、顾承红、甘磊、华昊辰·

电力用户的有限理性行为研究综述与展望

作者信息 +

A Review and Future Prospects of Bounded Rational Behavior in Power Consumers

Author information +
文章历史 +

摘要

【目的】 针对全球能源转型背景下新型电力系统调节能力不足的挑战,文章旨在通过系统梳理用户有限理性行为特征及其应用,填补传统需求侧管理中忽略行为复杂性的理论空白,构建供需互动优化的理论基础,为挖掘需求侧资源潜力提供理论支撑。【方法】 文章通过多学科交叉整合经济学与行为科学理论框架,分析用户在电力消费中的有限理性现象,明确其与传统“理性”行为的差异。从需求价格弹性、消费者心理学、行为经济学和数据驱动四个角度探讨用户行为特征。进一步,探讨了有限理性在需求响应潜力评估、负荷预测及用户用能决策等方面的应用。最后,指出现有对用户有限理性行为研究存在的不足和对未来的行为刻画研究进行了展望。【结论】 文章为需求侧资源精准调控提供跨学科理论框架,推动市场机制设计与互动调控的创新。未来结合数据驱动对用户用电数据进行分析,合理辨识关键参数,进一步深化对用户用电行为的深刻理解,助力“双碳”目标下系统调节能力提升与用户用能成本降低的双重实现。

Abstract

[Objective] Amidst the global energy transition, addressing the insufficient regulation capacity of the new electricity system, this study systematically examines the characteristics and applications of bounded rationality behaviors of users. It aims to bridge the theoretical gap in conventional demand-side management caused by oversimplified behavioral assumptions, establish a theoretical foundation for supply-demand interaction optimization, and provide actionable insights for unlocking the potential of demand-side resources.[Methods] An interdisciplinary framework integrating economics and behavioral science theories was developed to analyze bounded rationality in electricity consumption, explicitly distinguishing it from traditional rational behavioral paradigms. User behavior was characterized by four dimensions: the price elasticity of demand, consumer psychology principles, behavioral economics mechanisms, and data-driven behavioral modeling. Furthermore, the implications of bounded rationality were investigated across three key domains: demand response potential assessment, load forecasting accuracy improvement, and user-centric energy decision optimization. The study concluded with a critical evaluation of the current research gaps and proposed methodological advancements for future behavioral characterization studies.[Conclusions] This study contributes to an interdisciplinary framework to enable precision regulation of demand-side resources, fostering innovation in adaptive market mechanisms and dynamic control strategies. Future studies can integrate data-driven analyses of user electricity consumption data to rationally identify critical parameters. This will deepen the fundamental understanding of user energy behaviors, thereby enabling the dual achievement of enhanced system regulation capacity and reduced user energy costs under the “Dual Carbon” goals.

关键词

电力供需互动 / 有限理性 / 行为经济学理论 / 用电决策

Key words

electricity supply-demand interaction / bounded rationality / behavioral economics theory / electricity consumption decision making

引用本文

导出引用
甘磊, 张鹏, 朱琳, . 电力用户的有限理性行为研究综述与展望[J]. 电力建设. 2025, 46(7): 67-81 https://doi.org/10.12204/j.issn.1000-7229.2025.07.006
GAN Lei, ZHANG Peng, ZHU Lin, et al. A Review and Future Prospects of Bounded Rational Behavior in Power Consumers[J]. Electric Power Construction. 2025, 46(7): 67-81 https://doi.org/10.12204/j.issn.1000-7229.2025.07.006
中图分类号: TM714   

参考文献

[1]
张力菠, 吴一锴, 王群伟. 考虑碳中和目标与成本优化的可再生能源大规模发展规划[J]. 广东电力, 2023, 36(7): 31-39.
ZHANG Libo, WU Yikai, WANG Qunwei. Large-scale development of renewable energy in consideration of carbon neutrality and cost optimization[J]. Guangdong Electric Power, 2023, 36(7): 31-39.
[2]
赵中华, 徐海玲, 郑志杰, 等. 山东电网“十四五” 调峰能力分析[J]. 山东电力技术, 2023, 50(10): 35-42.
ZHAO Zhonghua, XU Hailing, ZHENG Zhijie, et al. Analysis on peak load modulation capability of Shandong power grid in the 14th Five-Year Plan period[J]. Shandong Electric Power, 2023, 50(10): 35-42.
[3]
谭科, 王志承, 刘肇熙, 等. 考虑分布式储能的主动配电网需求侧管理机制与可靠优化方法[J]. 广东电力, 2024, 37(12): 129-137.
TAN Ke, WANG Zhicheng, LIU Zhaoxi, et al. Demand side management mechanism and robust optimization method for active distribution networks considering distributed energy storage system[J]. Guangdong Electric Power, 2024, 37(12): 129-137.
[4]
张瑶嘉, 高岩. 基于ADMM-GBS的考虑风光不确定性的智能电网实时电价策略[J]. 分布式能源, 2023, 8(6): 27-35.
ZHANG Yaojia, GAO Yan. Real-time price strategy for smart grid considering wind and solar power uncertainty based on ADMM-GBS[J]. Distributed Energy, 2023, 8(6): 27-35.
[5]
张娜, 王欢, 宋坤, 等. 基于多能源需求响应的综合能源系统动态优化控制研究[J]. 电测与仪表, 2023, 60(2):16-24.
ZHANG Na, WANG Huan, SONG Kun, et al. Study on dynamic optimal control of integrated energy system based on multienergydemand response[J]. Electrical Measurement & Instrumentation, 2023, 60(2):16-24.
[6]
张雷, 刘琦, 赵晓丽, 等. 电力需求增长和负荷灵活性提升视角下的风光资源密集地区可再生能源消纳研究[J]. 全球能源互联网, 2024, 7(4): 454-462.
ZHANG Lei, LIU Qi, ZHAO Xiaoli, et al. Research on renewable energy penetration in wind and solar resource-intensive areas from the perspective of power demand growth and load flexibility enhancement[J]. Journal of Global Energy Interconnection, 2024, 7(4): 454-462.
[7]
王毅, 张宁, 康重庆, 等. 电力用户行为模型: 基本概念与研究框架[J]. 电工技术学报, 2019, 34(10): 2056-2068.
WANG Yi, ZHANG Ning, KANG Chongqing, et al. Electrical consumer behavior model: basic concept and research framework[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2056-2068.
[8]
汤奕, 鲁针针, 宁佳, 等. 基于电力需求响应的智能家电管理控制方案[J]. 电力系统自动化, 2014, 38(9): 93-99.
TANG Yi, LU Zhenzhen, NING Jia, et al. Management and control scheme for intelligent home appliances based on electricity demand response[J]. Automation of Electric Power Systems, 2014, 38(9): 93-99.
[9]
刘念, 王程, 雷金勇. 市场模式下光伏用户群的电能共享与需求响应模型[J]. 电力系统自动化, 2016, 40(16): 49-55, 131.
LIU Nian, WANG Cheng, LEI Jinyong. Power energy sharing and demand response model for photovoltaic prosumer cluster under market environment[J]. Automation of Electric Power Systems, 2016, 40(16): 49-55, 131.
[10]
王锋, 宋惠宇, 张欣欣. 基于双碳目标的家庭错峰用电调度策略研究[J]. 电测与仪表, 2024, 61(12): 212-218.
WANG Feng, SONG Huiyu, ZHANG Xinxin. Research on household off-peak electricity consumption scheduling strategy based on carbon peaking and carbon neutrality goals[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 212-218.
[11]
AHMED N, LEVORATO M, LI G P. Residential consumer-centric demand side management[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4513-4524.
[12]
SAMADI P, MOHSENIAN-RAD H, SCHOBER R, et al. Advanced demand side management for the future smart grid using mechanism design[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1170-1180.
[13]
赵雪霖, 何光宇. 生活电器用电效用概念及其评估方法[J]. 电力系统自动化, 2016, 40(1): 53-59.
ZHAO Xuelin, HE Guangyu. Power utility evaluation of residential electrical appliances[J]. Automation of Electric Power Systems, 2016, 40(1): 53-59.
[14]
李广海, 陈通. 现代决策的基石: 理性与有限理性研究述评[J]. 统计与决策, 2008, 24(3): 49-52.
LI Guanghai, CHEN Tong. The cornerstone of modern decision-making: a review of the research on rationality and bounded rationality[J]. Statistics & Decision, 2008, 24(3): 49-52.
[15]
季露, 张靠社, 张刚, 等. 基于消费者心理学的尖峰电价模型研究[J]. 电网与清洁能源, 2017, 33(9): 89-92, 98.
JI Lu, ZHANG Kaoshe, ZHANG Gang, et al. Peak electricity pricing model based on the theory of consumer psychology[J]. Power System and Clean Energy, 2017, 33(9): 89-92, 98.
[16]
LIU J Q, HUANG S Y, LI D, et al. Addictive incentive mechanism in crowdsensing from the perspective of behavioral economics[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(5): 1109-1127.
[17]
张智, 卢峰, 林振智, 等. 考虑用户有限理性的售电公司峰谷组合电力套餐设计[J]. 电力系统自动化, 2021, 45(16): 114-123.
ZHANG Zhi, LU Feng, LIN Zhenzhi, et al. Peak-valley combination electricity package design for electricity retailer considering bounded rationality of consumers[J]. Automation of Electric Power Systems, 2021, 45(16): 114-123.
[18]
李广海, 陈通. 基于有限理性行为决策模糊综合评价研究[J]. 统计与决策, 2007, 23(24): 42-44.
LI Guanghai, CHEN Tong. Research on fuzzy comprehensive evaluation of behavior decision base on bounded rationality[J]. Statistics & Decision, 2007, 23(24): 42-44.
[19]
邱元森, 张奕源, 付玉雪, 等. 考虑用户有限理性的电动汽车充电需求[J]. 综合运输, 2024, 46(1): 71-78.
QIU Yuansen, ZHANG Yiyuan, FU Yuxue, et al. Charging demand of electric vehicles considering users' bounded rationality[J]. China Transportation Review, 2024, 46(1): 71-78.
[20]
韩浩博, 刘晓峰, 刘怀, 等. 有限理性视角下发电商市场竞争动态行为分析[J]. 电力建设, 2024, 45(10): 136-145.
HAN Haobo, LIU Xiaofeng, LIU Huai, et al. Analysis of dynamic behavior of market competition of generation companies from the perspective of limited rationality[J]. Electric Power Construction, 2024, 45(10): 136-145.
[21]
GYAMFI S, KRUMDIECK S, URMEE T. Residential peak electricity demand response: highlights of some behavioural issues[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 71-77.
[22]
BAO Z Y, HU Z C, KAMMEN D M, et al. Data-driven approach for analyzing spatiotemporal price elasticities of EV public charging demands based on conditional random fields[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4363-4376.
[23]
秦祯芳, 岳顺民, 余贻鑫, 等. 零售端电力市场中的电量电价弹性矩阵[J]. 电力系统自动化, 2004, 28(5): 16-19, 24.
QIN Zhenfang, YUE Shunmin, YU Yixin, et al. Price elasticity matrix of demand in current retail power market[J]. Automation of Electric Power Systems, 2004, 28(5): 16-19, 24.
[24]
王蓓蓓. 面向智能电网的用户需求响应特性和能力研究综述[J]. 中国电机工程学报, 2014, 34(22): 3654-3663.
WANG Beibei. Research on consumers’ response characterics and ability under smart grid: a literatures survey[J]. Proceedings of the CSEE, 2014, 34(22): 3654-3663.
[25]
AALAMI H A, PARSA MOGHADDAM M, YOUSEFI G R. Evaluation of nonlinear models for time-based rates demand response programs[J]. International Journal of Electrical Power & Energy Systems, 2015, 65: 282-290.
[26]
胡鹏, 艾欣, 张朔, 等. 基于需求响应的分时电价主从博弈建模与仿真研究[J]. 电网技术, 2020, 44(2): 585-592.
HU Peng, AI Xin, ZHANG Shuo, et al. Modelling and simulation study of TOU Stackelberg game based on demand response[J]. Power System Technology, 2020, 44(2): 585-592.
[27]
张超, 赵茜, 许钊, 等. 基于需求价格弹性的电价交叉补贴理论问题研究[J]. 中国电力, 2019, 52(8): 144-148, 156.
ZHANG Chao, ZHAO Qian, XU Zhao, et al. Research of electricity price cross subsidy based on demand price elasticity[J]. Electric Power, 2019, 52(8): 144-148, 156.
[28]
阮文骏, 王蓓蓓, 李扬, 等. 峰谷分时电价下的用户响应行为研究[J]. 电网技术, 2012, 36(7): 86-93.
RUAN Wenjun, WANG Beibei, LI Yang, et al. Customer response behavior in time-of-use price[J]. Power System Technology, 2012, 36(7): 86-93.
[29]
WANG Q F, WANG J H, GUAN Y P. Stochastic unit commitment with uncertain demand response[J]. IEEE Transactions on Power Systems, 2013, 28(1): 562-563.
[30]
林俐, 张玉, 顾嘉. 基于云模型的激励型区域柔性负荷响应不确定性研究[J]. 电网技术, 2020, 44(11): 4192-4201.
LIN Li, ZHANG Yu, GU Jia. Uncertainty of regional incentive flexible load based on cloud model[J]. Power System Technology, 2020, 44(11): 4192-4201.
[31]
缴傲, 胡臻, 向萌, 等. 考虑综合需求响应的社区综合能源系统主从博弈策略[J]. 电力系统及其自动化学报, 2021, 33(9): 94-102.
JIAO Ao, HU Zhen, XIANG Meng, et al. Master-slave game strategy for community integrated energy system considering integrated demand response[J]. Proceedings of the CSU-EPSA, 2021, 33(9): 94-102.
[32]
ZHAO N, WANG B B, BAI L Q, et al. Quantitative model of the electricity-shifting curve in an energy hub based on aggregated utility curve of multi-energy demands[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1329-1345.
[33]
GAN L, HU Y Y, CHEN X Y, et al. Application and outlook of prospect theory applied to bounded rational power system economic decisions[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3227-3237.
[34]
THALER R H. Mental accounting and consumer choice[J]. Marketing Science, 2008, 27(1): 15-25.
[35]
程乐峰, 杨汝, 刘贵云, 等. 多群体非对称演化博弈动力学及其在智能电网电力需求侧响应中的应用[J]. 中国电机工程学报, 2020, 40(S1): 20-36.
CHENG Lefeng, YANG Ru, LIU Guiyun, et al. Multi-group asymmetric evolutionary game dynamics and its application in power demand side response of smart grid[J]. Proceedings of the CSEE, 2020, 40(S1): 20-36.
[36]
肖白, 崔涵淇, 姜卓, 等. 基于有限理性用户选择行为的定制化电价套餐设计[J]. 电网技术, 2021, 45(3): 1050-1058.
XIAO Bai, CUI Hanqi, JIANG Zhuo, et al. Customized electricity price package design based on limited rational user selection behavior[J]. Power System Technology, 2021, 45(3): 1050-1058.
[37]
王一铮, 庞凯元, 文福拴, 等. 促进用户侧能源转型的区域能源定价与管理策略[J]. 电力系统自动化, 2020, 44(16): 21-29.
WANG Yizheng, PANG Kaiyuan, WEN Fushuan, et al. Regional energy pricing and management strategies for promoting user-side energy transition[J]. Automation of Electric Power Systems, 2020, 44(16): 21-29.
[38]
BARABADI B, YAGHMAEE M H. A new pricing mechanism for optimal load scheduling in smart grid[J]. IEEE Systems Journal, 2019, 13(2): 1737-1746.
In a residential demand response program, lack of users' participation can significantly impair program effectiveness. For this purpose, an incentive-based demand response (DR) program is designed and users' decision to participate is analyzed in a day-ahead time horizon. In this paper, we first defined a quasi-convex cost function, which accounts for a predetermined base-load price. Then, a DR scheme introduced to shift customers load and minimize their cost. Subsequently, a social pricing/billing mechanism is proposed that is correlated with the overall load in the system. The proposed pricing/billing mechanism leads to a game between consumers, hence the users' strategies are investigated under this new mechanism. To capture whether inefficiencies exist in current DR programs that stem from inexperienced or irrational users, we analyze our DR program using game theory under expected utility theory and prospect theory (PT). The numerical results suggest that our proposed price function and billing-mechanism is effective to control customer consumption pattern with the desired norm imposed by the majority population. In particular, the behavior of customers differs when irrationality added to them under PT framework.
[39]
JHALA K, NATARAJAN B, PAHWA A. Prospect theory-based active consumer behavior under variable electricity pricing[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2809-2819.
[40]
WANG Y P, SAAD W, MANDAYAM N B, et al. Load shifting in the smart grid: to participate or not?[J]. IEEE Transactions on Smart Grid, 2016, 7(6): 2604-2614.
[41]
XIAO L, MANDAYAM N B, VINCENT POOR H. Prospect theoretic analysis of energy exchange among microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 63-72.
[42]
ETESAMI S R, SAAD W, MANDAYAM N B, et al. Stochastic games for the smart grid energy management with prospect prosumers[J]. IEEE Transactions on Automatic Control, 2018, 63(8): 2327-2342.
[43]
WANG Y, ZHANG L, DING Q, et al. Prospect theory-based optimal bidding model of a prosumer in the power market[J]. IEEE Access, 2020, 8: 137063-137073.
[44]
林宇豪, 王弘利, 廖烽然, 等. 考虑用户有限理性的需求侧电能共享价格套餐设计[J]. 电力建设, 2024, 45(11): 148-160.
LIN Yuhao, WANG Hongli, LIAO Fengran, et al. Pricing package design for energy sharing on the power demand side considering bounded rationality of users[J]. Electric Power Construction, 2024, 45(11): 148-160.
[45]
YANG J, WU F Z, YAN J, et al. Charging demand analysis framework for electric vehicles considering the bounded rationality behavior of users[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105952.
[46]
朱天怡, 艾芊, 贺兴, 等. 基于数据驱动的用电行为分析方法及应用综述[J]. 电网技术, 2020, 44(9): 3497-3507.
ZHU Tianyi, AI Qian, HE Xing, et al. An overview of data-driven electricity consumption behavior analysis method and application[J]. Power System Technology, 2020, 44(9): 3497-3507.
[47]
BISHOP M C. Pattern Recognition and Machine Learning[M]. New York: Springer, 2016.
[48]
ROBERT C. Machine learning, a probabilistic perspective[J]. CHANCE, 2014, 27(2): 62-63.
[49]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[50]
李家东, 胡正华, 蒋卫平, 等. 基于时间序列分类任务的智能电能表负荷监测技术研究[J]. 电测与仪表, 2023, 60(6): 153-159.
LI Jiadong, HU Zhenghua, JIANG Weiping, et al. Load monitoring technology of smart electricity meters based on time series classification task[J]. Electrical Measurement & Instrumentation, 2023, 60(6): 153-159.
[51]
范慧芳, 咸日常, 王涛, 等. 改进朴素贝叶斯模型在电力变压器故障定位中的应用[J]. 高压电器, 2023, 59(2): 190-197.
FAN Huifang, XIAN Richang, WANG Tao, et al. Application of improved naive Bayes model in fault location of power transformer[J]. High Voltage Apparatus, 2023, 59(2): 190-197.
[52]
GENUER R, POGGI JM. Random forests[M]. Cham: Springer, 2020.
[53]
RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
[54]
彭大健, 裴玮, 肖浩, 等. 数据驱动的用户需求响应行为建模与应用[J]. 电网技术, 2021, 45(7): 2577-2586.
PENG Dajian, PEI Wei, XIAO Hao, et al. Data-driven consumer demand response behavior modelization and application[J]. Power System Technology, 2021, 45(7): 2577-2586.
[55]
张乘熙. 基于数据驱动的用户侧用电行为分析[D]. 汉中: 陕西理工大学, 2024.
ZHANG Chengxi. Analysis of user-side electricity consumption behavior based on data driving[D]. Hanzhong: Shaanxi University of Technology, 2024.
[56]
ZHAO Z Y, WANG C S, LIAO H W, et al. Data-driven analysis and modeling of collective generation behaviors in an electricity market: a perspective from market participants[J]. IEEE Transactions on Energy Markets, Policy and Regulation, 2023, 1(3): 161-172.
[57]
XING W W, ZHAO S B, ZHANG S L, et al. A generic bi-layer data-driven crowd behaviors modeling approach[J]. IEICE Transactions on Information and Systems, 2017, E100.D(8): 1827-1836.
[58]
XING Q, CHEN Z, ZHANG Z Q, et al. Modelling driving and charging behaviours of electric vehicles using a data-driven approach combined with behavioural economics theory[J]. Journal of Cleaner Production, 2021, 324: 129243.
[59]
赵阳, 胡诗尧, 杨书强, 等. 售电市场环境下基于数据驱动的用户用电行为分析[J]. 电力需求侧管理, 2020, 22(4): 45-50.
ZHAO Yang, HU Shiyao, YANG Shuqiang, et al. Analysis of data-driven based users’ electricity consumption behavior in retail market[J]. Power Demand Side Management, 2020, 22(4): 45-50.
[60]
王兴东, 马磊, 杨金成, 等. 计及需求侧资源可调潜力的互动关键技术发展综述及展望[J]. 供用电, 2023, 40(3): 71-78.
WANG Xingdong, MA Lei, YANG Jincheng, et al. Development summary and prospect of interactive key technologies taking into account the interactive potential of demand side resources[J]. Distribution & Utilization, 2023, 40(3): 71-78.
[61]
The Brattle Group Freeman, Sullivan&Co Global Energy Partners,LLC. A national assessment of demand response potential[R]. Federal Energy Regulatory Commission, 2009.
[62]
GILS H C. Assessment of the theoretical demand response potential in Europe[J]. Energy, 2014, 67: 1-18.
[63]
BARTUSCH C, ALVEHAG K. Further exploring the potential of residential demand response programs in electricity distribution[J]. Applied Energy, 2014, 125: 39-59.
[64]
GILS H C. Economic potential for future demand response in Germany:modeling approach and case study[J]. Applied Energy, 2016, 162: 401-415.
[65]
ROTGER-GRIFUL S, JACOBSEN R H, NGUYEN D, et al. Demand response potential of ventilation systems in residential buildings[J]. Energy and Buildings, 2016, 121: 1-10.
[66]
李正明, 张纪华, 陈敏洁. 基于层次分析法的企业有序用电模糊综合评估[J]. 电力系统保护与控制, 2013, 41(7): 136-141.
LI Zhengming, ZHANG Jihua, CHEN Minjie. Fuzzy comprehensive evaluation of enterprise’s orderly power utility based on analytic hierarchy process[J]. Power System Protection and Control, 2013, 41(7): 136-141.
[67]
王芃, 文福拴, 王斐, 等. 基于混合多属性评价的错峰用电预案编制方法[J]. 电力系统自动化, 2016, 40(5): 54-61, 70.
WANG Peng, WEN Fushuan, WANG Fei, et al. A hybrid multiple-attribute evaluation based scheduling method for peak load shifting[J]. Automation of Electric Power Systems, 2016, 40(5): 54-61, 70.
[68]
杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46(2): 699-714.
YANG Xiu, FU Guangnu, LIU Fang, et al. Potential evaluation and control strategy of air conditioning load aggregation response considering multiple factors[J]. Power System Technology, 2022, 46(2): 699-714.
[69]
杨济如, 石坤, 崔秀清, 等. 需求响应下的变频空调群组削峰方法[J]. 电力系统自动化, 2018, 42(24): 44-52.
YANG Jiru, SHI Kun, CUI Xiuqing, et al. Peak load reduction method of inverter air-conditioning group under demand response[J]. Automation of Electric Power Systems, 2018, 42(24): 44-52.
[70]
NAKAYAMA K, TSUJI M, CHANTANA J, et al. Description of short circuit current of outdoor photovoltaic modules by multiple regression analysis under various solar irradiance levels[J]. Renewable Energy, 2020, 147: 895-902.
[71]
蔡舒毅. 配电网规划中电力负荷预测方法的有效性探究[J]. 通信电源技术, 2019, 36(11): 229-230.
CAI Shuyi. Validity research on the power load forecasting method in distribution network planning[J]. Telecom Power Technology, 2019, 36(11): 229-230.
[72]
LIN W X, WU D, BOULET B. Spatial-temporal residential short-term load forecasting via graph neural networks[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 5373-5384.
[73]
席雅雯, 吴俊勇, 石琛, 等. 融合历史数据和实时影响因素的精细化负荷预测[J]. 电力系统保护与控制, 2019, 47(1): 80-87.
XI Yawen, WU Junyong, SHI Chen, et al. A refined load forecasting based on historical data and real-time influencing factors[J]. Power System Protection and Control, 2019, 47(1): 80-87.
[74]
SADAEI H J, ENAYATIFAR R, ABDULLAH A H, et al. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search[J]. International Journal of Electrical Power & Energy Systems, 2014, 62: 118-129.
[75]
YANG W D, WANG J Y, YANG S B, et al. An innovative model for electrical load forecasting: a case study in Australia[J]. Journal of Intelligent & Fuzzy Systems, 45(1): 891-909.
[76]
屈克庆, 赵登辉, 毛玲, 等. 考虑城市空间结构和用户有限理性的电动汽车快充负荷预测[J]. 南方电网技术, 2024, 18(10): 151-160.
QU Keqing, ZHAO Denghui, MAO Ling, et al. Fast charging load forecasting of electric vehicles considering urban spatial structure and user’s bounded rationality[J]. Southern Power System Technology, 2024, 18(10): 151-160.
[77]
CHENG L L, ZANG H X, XU Y, et al. Probabilistic residential load forecasting based on micrometeorological data and customer consumption pattern[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3762-3775.
[78]
XIA Z, MA H, SAHA T K, et al. Consumption scenario-based probabilistic load forecasting of single household[J]. IEEE Transactions on Smart Grid, 2022, 13(2): 1075-1087.
[79]
LI K, DUAN P F, CAO X D, et al. A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction[J]. Applied Energy, 2024, 365: 123283.
[80]
SPANDAGOS C, NG T L. Fuzzy model of residential energy decision-making considering behavioral economic concepts[J]. Applied Energy, 2018, 213: 611-625.
[81]
HUANG Z J, WANG F, LU Y H, et al. Optimization model for home energy management system of rural dwellings[J]. Energy, 2023, 283: 129039.
[82]
MAHAPATRA B, NAYYAR A. Home energy management system (HEMS): concept, architecture, infrastructure, challenges and energy management schemes[J]. Energy Systems, 2022, 13(3): 643-669.
[83]
宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44(17): 1-8.
NING Jian, JIANG Changming, ZHANG Zhe, et al. Thinking and technical practice of adjustable load resources participating in dispatching and control of power grid[J]. Automation of Electric Power Systems, 2020, 44(17): 1-8.
[84]
WANG Y, CHEN Q X, HONG T, et al. Review of smart meter data analytics: applications, methodologies, and challenges[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3125-3148.
[85]
SABERI H, ZHANG C, DONG Z Y. A multi-agent deep constrained Q-learning method for smart building energy management under uncertainties[J]. IEEE Transactions on Smart Grid, 2024, 15(5): 4649-4661.
[86]
许刚, 郭子轩. 考虑多态能源系统中用户多维响应特性的激励型综合需求响应优化策略[J]. 中国电机工程学报, 2023, 43(24): 9398-9411.
XU Gang, GUO Zixuan. Optimization strategy for incentive-based integrated demand response considering multi-dimensional user response characteristics in multi-energy system[J]. Proceedings of the CSEE, 2023, 43(24): 9398-9411.
[87]
CHEN Y Y, HU S, XIE S W, et al. Optimal dynamic pricing of fast charging stations considering bounded rationality of users and market regulation[J]. IEEE Transactions on Smart Grid, 2024, 15(4): 3950-3965.
[88]
SCHWANEN T, ETTEMA D. Coping with unreliable transportation when collecting children: examining parents’ behavior with cumulative prospect theory[J]. Transportation Research Part A: Policy and Practice, 2009, 43(5): 511-525.
[89]
AVINERI E, BOVY P H L. Identification of parameters for a prospect theory model for travel choice analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2082(1): 141-147.
[90]
王燕. 基于前景理论的通勤者出行路径选择行为及风险态度研究[D]. 成都: 西南交通大学, 2017.
WANG Yan. Research on commuters’ travel path choice behavior and risk attitude based on prospect theory[D]. Chengdu: Southwest Jiaotong University, 2017.
[91]
徐红利, 周晶, 徐薇. 基于累积前景理论的随机网络用户均衡模型[J]. 管理科学学报, 2011, 14(7): 1-7, 54.
XU Hongli, ZHOU Jing, XU Wei. Cumulative prospect theory-based user equilibrium model for stochastic network[J]. Journal of Management Sciences in China, 2011, 14(7): 1-7, 54.

基金

国家自然科学基金项目(52207092)
国家自然科学基金项目(U22B20112)

编辑: 魏希辉
PDF(4553 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/