PDF(3670 KB)
PDF(3670 KB)
PDF(3670 KB)
考虑削峰服务的电动汽车集群最优充放电策略
Optimal Charging and Discharging Strategies for Electric Vehicle Clusters Considering Power Peak Shaving
【目的】 在含新能源的源网荷储一体化系统中,为优化参与削峰辅助服务电动汽车用户和负荷聚合商收益,建立了考虑各时段削峰需求程度的电动汽车集群充放电策略优化模型,并优化了参与削峰后续时段电动汽车集群充放电策略。【方法】 首先,评估新能源出力场景下的各时段削峰需求;其次,基于各时段削峰需求程度,以负荷聚合商和电动汽车用户双方总期望收益最大为目标,建立电动汽车集群充放电策略优化模型;最后,为避免参与削峰服务后的电动汽车集群负荷出现负荷尖峰,以负荷波动最小为目标优化后续时段充放电策略。【结果】 算例分析表明,所提充放电策略可辅助平滑高峰期用电负荷,同时使负荷聚合商和电动汽车用户总期望收益最大化,并抑制了参与削峰服务后的“负荷尖峰”现象。【结论】 所提策略相较于不考虑参与削峰服务策略的电动汽车用户和负荷聚合商收益明显提高,削峰后续时段负荷波动明显降低,验证了所提方法的实用性和有效性。
[Objective] In a source-grid-load-storage system incorporating renewable energy, an electric vehicle (EV) cluster charging and discharging strategy optimization model is established to optimize the revenues of EV users and load aggregators participating in peak-shaving ancillary services, considering the peak-shaving demand levels across different time periods.[Methods] First, the peak-shaving demand for each time period under renewable energy production scenarios was assessed. Second, based on the level of the peak-shaving demand in each time period, an optimization model for the charging and discharging strategy of the EV cluster was developed to maximize the total expected revenue for both load aggregators and EV users. Finally, to prevent peak load occurrences after participating in peak-shaving services, the charging and discharging strategy for subsequent time periods were optimized to minimize load fluctuations.[Results] The case analysis demonstrated that the proposed charging and discharging strategy assisted in smoothing the electricity load during peak periods, maximized the total expected revenue for load aggregators and EV users, and mitigated the occurrence of load peaks after participating in peak-shaving services.[Conclusions] The strategy proposed in this study significantly improved the benefits for EV users and load aggregators compared with the strategy without considering participation in the peak-shaving service, and the load fluctuations in the subsequent period of peak shaving were significantly reduced that verified the practicality and effectiveness of the proposed method.
源网荷储一体化系统 / 电动汽车用户 / 负荷聚合商 / 削峰辅助服务 / 电动汽车集群充放电策略优化 / 负荷尖峰
source-grid-load-storage system / electric vehicle (EV) users / load aggregators / peak-shaving ancillary services / EV cluster charging and discharging strategy optimization / load peaks
| [1] |
孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15): 3264-3271.
|
| [2] |
赵冬梅, 宋晨铭, 冯向阳, 等. 100%新能源场景下考虑频率稳定约束的源网荷储一体化系统储能优化配置[J]. 电工技术学报, 2025, 40(7): 2146-2161.
|
| [3] |
姚建国, 杨胜春, 王珂, 等. 智能电网“源-网-荷” 互动运行控制概念及研究框架[J]. 电力系统自动化, 2012, 36(21): 1-6, 12.
|
| [4] |
王琼, 邹晴, 李乐, 等. 基于多智能体强化学习的电动汽车充放电调控算法[J]. 供用电, 2023, 40(9): 83-90.
|
| [5] |
张琳娟, 周志恒, 陈婧华, 等. 含电动汽车的县域光伏台区储能容量优化配置研究[J]. 供用电, 2024, 41(10): 101-113.
|
| [6] |
吴永孝, 肖辉, 曾林俊, 等. 考虑供需双边响应的综合能源系统优化调度[J]. 电力建设, 2024, 45(10): 13-23.
|
| [7] |
陈文颖, 刘蓓迪. 基于粒子群算法的电动汽车有序充放电优化[J]. 山东电力技术, 2023, 50(1): 52-58.
|
| [8] |
侯永全, 徐敦彬, 袁晓冬, 等. 基于博弈论的含氢微网多主体能源系统优化配置[J]. 高压电器, 2024, 60(7): 48-59.
|
| [9] |
娄奇鹤, 李彦斌, 赵宇尘, 等. 适应极端事件的配电网弹性规划和投资策略研究综述[J]. 电力建设, 2024, 45(5): 37-47.
随着分布式电源、电动汽车等多元新要素新业态规模化发展,叠加洪涝、台风等极端事件频发,配电网规划设计和投资决策面临巨大挑战,然而传统配电网规划没有充分调动新要素新业态对电力系统的支撑作用。首先,梳理了极端事件影响量化方法、弹性规划、投资策略的研究现状,并对现有投资成效评价方法进行了归纳整理,最后结合适应极端事件的配电网发展诉求,对弹性规划和投资策略优化的未来研究方向提出展望。
With the large-scale development of distributed power supply, electric vehicles and other diversified new elements of the new industry, superimposed on the frequent occurrence of floods, typhoons and other extreme events, the distribution network planning, design and investment decision-making faces great challenges. However, the traditional distribution network planning has not fully mobilized the new elements and new industries to support the power system. The paper firstly combs through the research status quo of extreme event impact quantification methods, resilience planning, and investment strategy, and summarizes the existing investment effectiveness evaluation methods, and finally combines the distribution network development demands adapted to extreme events, and puts forward an outlook on the future research direction of resilience planning and investment strategy optimization. |
| [10] |
葛乐, 王庆园, 王明深, 等. 考虑充放电激励机制的电动汽车聚合商参与能量-调频市场多阶段运营策略[J]. 电力自动化设备, 2024, 44(6): 176-184.
|
| [11] |
|
| [12] |
付卓铭, 胡俊杰, 马文帅, 等. 规模化电动汽车参与电力系统二次调频研究综述[J]. 电力建设, 2023, 44(2): 1-14.
大规模可再生能源并入电网使电力系统频率稳定支撑能力下降,给电力系统二次调频带来新的问题与挑战,电动汽车由于集群庞大且具有准确快速的动态响应能力而成为新型调频资源。首先,对规模化电动汽车参与调频辅助服务系统框架进行总结,从可调节容量直接量化和能量可行域两方面对电动汽车集群可调节容量量化方法进行归纳;然后,从模型、方法和应用等多个角度,对电动汽车参与电力系统二次调频的日前优化调度和实时控制过程展开综述;最后,对规模化电动汽车参与电力系统二次调频未来的研究方向和关键技术进行了展望。
The connection of large-scale renewable energy to the power grid reduces the frequency stability of the power system, which brings new problems and challenges to the secondary frequency regulation of the power system. With a large cluster, the electric vehicles have become a new type of frequency-regulation resources due to its accurate and fast dynamic response capability. This paper first summarizes the system framework of numerous electric vehicles participating in frequency-regulation ancillary service and introduces two methods to quantify the adjustable capacity of aggregated electric vehicles. One method quantifies the adjustable capacity of the aggregated electric vehicles directly, and another one presents the energy feasible region of the aggregated electric vehicles. Then, the day-ahead optimal scheduling and the real-time control process of electric vehicles participating in secondary frequency regulation of the power system are reviewed from different aspects: model, method, and application. Finally, the future research direction and key technologies of numerous electric vehicles participating in secondary frequency regulation of the power system are prospected. |
| [13] |
戴朝华, 杨帅, 叶圣永, 等. 供需双方博弈视角下的V2G优化策略[J]. 西南交通大学学报, 2025, 60(1): 166-174, 193.
|
| [14] |
江建, 张树森, 徐峰亮. 考虑电动汽车集群响应的分布式资源协同调度策略研究[J]. 山东电力技术, 2024, 51(6): 1-11, 35.
|
| [15] |
高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47(18): 60-67.
|
| [16] |
房宇轩, 胡俊杰, 马文帅. 计及用户意愿的电动汽车聚合商主从博弈优化调度策略[J]. 电工技术学报, 2024, 39(16): 5091-5103.
|
| [17] |
程飞, 郭春林, 高泽阳, 等. 参与电网削峰调节的电动重卡换电站调度策略[J]. 电力系统自动化, 2024, 48(9): 120-128.
|
| [18] |
王炜歆, 张露元, 王小君, 等. 计及电动汽车引导和网络重构的配电网负荷恢复策略[J]. 山东电力技术, 2024, 51(8): 18-26.
|
| [19] |
辛昊, 严正, 许少伦. 基于多代理系统的电动汽车协调充电策略[J]. 电网技术, 2015, 39(1): 48-54.
|
| [20] |
张婷婷. 考虑经济物理约束的电动汽车负荷聚合可调节容量评估[D]. 北京: 华北电力大学, 2022.
|
| [21] |
卢有飞, 邹时容, 刘璐豪, 等. 基于知识共享的高比例可再生能源系统发电控制[J]. 高压电器, 2024, 60(10): 33-45.
|
| [22] |
杨本星, 王伟, 杨明轩, 等. 辅助风电并网的构网型储能控制策略研究[J]. 高压电器, 2023, 59(7): 56-64.
|
| [23] |
王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1869.
|
| [24] |
惠振国, 艾澜, 常鹏霞, 等. 计及风光出力相关性的风光水储互补系统优化调度[J]. 水电能源科学, 2024, 42(8): 218-222.
|
| [25] |
李鹏, 朱洪泽, 骆光杰, 等. 基于ARMA模型的海上风机随机风场模拟[J]. 武汉大学学报(工学版), 2024, 57(1): 112-120.
|
| [26] |
董文略, 王群, 杨莉. 含风光水的虚拟电厂与配电公司协调调度模型[J]. 电力系统自动化, 2015, 39(9): 75-81, 207.
|
| [27] |
U.S. Department of Transportation, Federal Highway Administration. The 2017 national household travel survey[EB/OL]. [2024-07-15]. https://nhts.ornl.gov/.
|
| [28] |
李军, 梁嘉诚, 刘克天, 等. 计及用户响应度的电动汽车充放电优化调度策略[J]. 南方电网技术, 2023, 17(8): 123-132.
|
| [29] |
|
AI小编
/
| 〈 |
|
〉 |