基于扰动程度自适应切换的LCC-HVDC数字-物理混合仿真DIM接口算法

甘效罗, 王拓, 杨明城, 赫羽朋, 王尉, 辛业春, 李国庆

电力建设 ›› 2025, Vol. 46 ›› Issue (11) : 71-82.

PDF(4456 KB)
PDF(4456 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (11) : 71-82. DOI: 10.12204/j.issn.1000-7229.2025.11.007
规划建设

基于扰动程度自适应切换的LCC-HVDC数字-物理混合仿真DIM接口算法

作者信息 +

Adaptive Switching Algorithm for Digital Physical Hybrid Simulation DIM Interface of LCC-HVDC Based on Disturbance Degree

Author information +
文章历史 +

摘要

【目的】 数字-物理混合仿真可以更精确地模拟高压直流输电系统实际物理运行特性,数字与物理子系统间的接口算法是保证系统稳定运行和精确仿真的重要构成,因不同运行条件下直流系统特性存在显著差异,现有接口算法难以适用于全部工况,为此,提出一种基于扰动程度自适应切换的阻尼阻抗接口算法。【方法】 首先,基于不同工况下直流系统阻抗及接口算法性能特性,提出补偿阻抗切换方法并设计了切换判据。然后,根据补偿阻抗匹配原则,提出稳态下直流输电系统等效阻抗和暂态下补偿阻抗稳定预设值计算方法。最后,搭建了高压直流输电系统混合仿真模型,对稳态和暂态运行条件下接口特性进行验证。【结果】 仿真结果表明,所提方法相对于理想变压器法具有更高的暂态稳定性,且稳态下仿真相对误差均低于1.5%,具有较好的精确性。【结论】 所提自适应切换方法显著提升了阻尼阻抗法的适用范围,为高压直流输电数字-物理混合仿真提供了一种新方法。

Abstract

[Objective] A digital-physical hybrid simulation can accurately simulate the actual operating characteristics of a high-voltage direct-current (HVDC) transmission system. However, an interface module between the digital and physical subsystems is crucial for system stability and precise simulations. Because of the differences in direct current (DC) system characteristics under various conditions, the existing algorithms are not uniformly applicable. This paper presents a damping impedance interface algorithm based on adaptive switching and degree of disturbance.[Methods] First, a compensation impedance-switching method and criteria are proposed based on impedance and performance characteristics. Subsequently, the calculation methods for the equivalent impedance in the steady state and compensation impedance in the transient state are presented. Finally, a hybrid simulation model is built and the interface characteristics are verified.[Results] The results achieved higher stability than the ideal transformer method and a relative error of less than 1.5% in the steady state, indicating good accuracy.[Conclusions] The proposed adaptive switching method significantly expands the applicability range of the damping impedance approach, offering a novel solution for the digital-physical hybrid simulation of HVDC transmission systems.

关键词

高压直流输电 / 数字-物理混合仿真 / 阻尼阻抗法 / 自适应切换 / 补偿阻抗匹配

Key words

high voltage direct current transmission / digital physical hybrid simulation / damping impedance method / adaptive switching / compensation impedance matching

引用本文

导出引用
甘效罗, 王拓, 杨明城, . 基于扰动程度自适应切换的LCC-HVDC数字-物理混合仿真DIM接口算法[J]. 电力建设. 2025, 46(11): 71-82 https://doi.org/10.12204/j.issn.1000-7229.2025.11.007
GAN Xiaoluo, WANG Tuo, YANG Mingcheng, et al. Adaptive Switching Algorithm for Digital Physical Hybrid Simulation DIM Interface of LCC-HVDC Based on Disturbance Degree[J]. Electric Power Construction. 2025, 46(11): 71-82 https://doi.org/10.12204/j.issn.1000-7229.2025.11.007
中图分类号: TM73   

参考文献

[1]
宋金钊, 李永丽, 曾亮, 等. 高压直流输电系统换相失败研究综述[J]. 电力系统自动化, 2020, 44(22): 2-13.
SONG Jinzhao, LI Yongli, ZENG Liang, et al. Review on commutation failure of HVDC transmission system[J]. Automation of Electric Power Systems, 2020, 44(22): 2-13.
[2]
李雅晗, 夏世威, 马琳琳, 等. 交直流混联系统暂态功角稳定评估及特征量可解释性分析[J]. 电力建设, 2024, 45(2): 1-9.
摘要
相较传统电力系统,含新能源的交直流混联系统结构更加复杂,其稳定评估难度更大,且稳定影响因素的甄别和解释性较差。针对上述问题,首先选择新能源和直流特征量作为稳定评估模型的输入,并由sigmoid函数得到样本预测值与稳定结果之间的关系,提出一种基于极致梯度提升树(extreme gradient Boosting, XGBoost)的交直流混联系统暂态功角稳定评估方法;为进一步分析特征量对系统暂态功角稳定的影响,提出基于SHAP(Shapley additive explanations)的特征量可解释分析方法,从全局说明新能源和直流特征量的重要性,并从全部样本的角度反映各特征量值本身的大小与稳定结果的促进和抑制关系,再从局部得到特征量对单个样本稳定结果的影响;最后在某500 kV实际交直流混联系统上进行仿真验证,证实了该评估方法的准确率较高且SHAP能有效解释新能源和直流特征量对交直流混联系统暂态功角稳定的影响。
LI Yahan, XIA Shiwei, MA Linlin, et al. Transient power angle stability evaluation and interpretability analysis of AC/DC hybrid power system[J]. Electric Power Construction, 2024, 45(2): 1-9.
摘要

Compared with traditional power systems, the structure of an AC/DC hybrid system with new energy sources is more complex, its stability evaluation is more difficult, and the identification and interpretation of stability influencing factors are poor. Given the above problems, this study first selects new energy and DC features as the input of the stability evaluation model and obtains the relationship between the sample prediction value and the stability result using the sigmoid function. A transient power-angle stability evaluation method for an AC/DC hybrid system based on extreme gradient Boosting (XGBoost) was proposed. To further analyze the influence of features on the transient power angle stability of the system, an interpretable analysis method of features based on SHAP is proposed, which explains the importance of new energy and DC features from a global perspective, which reflects the relationship between the size of each feature itself and the promotion and inhibition of stability results from the perspective of all samples, and then obtains the influence of features on the stability results of a single sample from a local perspective. Finally, simulation verification was performed on a 500 kV actual AC/DC hybrid system, which proves that the accuracy of the evaluation method is high and that SHAP can effectively explain the influence of new energy and DC features on the transient power angle stability of the AC/DC hybrid system.

[3]
刘晓琳, 曹泽宇, 高丙团, 等. HVDC送端交流系统故障暂态过电压评估指标[J]. 电力建设, 2023, 44(1): 64-72.
摘要
特高压直流输电系统直流闭锁故障及交流系统短路故障引起的暂态过电压,对系统稳定性造成严重冲击。量化评估交直流系统暂态性能指标,对确定交直流电力系统规划设计和调度运行具有指导意义。对交流系统暂态过电压机理进行分析,推导出基于无功补偿和短路比的暂态过电压计算方法,基于系统短路比与补偿电容和交流滤波器参数的比值定义了暂态电压评估指标R<sub>r</sub>。研究表明,随着该暂态电压评估指标R<sub>r</sub>减小,系统故障后送端换流母线暂态电压升高,受端也会发生不同程度的换相失败。最后,基于国际大电网会议直流标准测试系统,验证了所提指标的有效性。
LIU Xiaolin, CAO Zeyu, GAO Bingtuan, et al. Evaluation index of transient overvoltage during fault at HVDC sending-end AC system[J]. Electric Power Construction, 2023, 44(1): 64-72.
摘要
<p id="p00010">The transient overvoltage caused by the DC blocking fault of the UHVDC transmission system and the short-circuit fault of the AC system has a serious impact on the stability of the system. Quantitative assessment of the transient performance index has important guiding significance for the dispatching operation of AC/DC power system. This paper analyzes the mechanism of transient overvoltage in AC system, deduces the calculation method of transient overvoltage on the basis of reactive power compensation and short-circuit ratio, and then defines the transient voltage evaluation index <i>R</i><sub>r</sub>. Research shows that, as the index <i>R</i><sub>r</sub> decreases, the transient voltage of the commutation bus at the sending end will increase after a system fault, and commutation failures will also occur at the receiving end. Finally, on the basis of the CIGRE benchmark HVDC standard test system, the effectiveness of the proposed index <i>R</i><sub>r</sub> is verified.</p> <p id="p00015">This work is supported by State Grid Science and Technology Project (No. 5230HQ21000S).</p>
[4]
张哲任, 徐政, 黄莹, 等. 藏东南光伏基地全直流汇集送出方案及其控制策略研究[J]. 浙江电力, 2023, 42(6): 23-32.
ZHANG Zheren, XU Zheng, HUANG Ying, et al. Research on the full DC collection and transmission scheme for the photovoltaic base in Southeast Tibet and its control strategy[J]. Zhejiang Electric Power, 2023, 42(6): 23-32.
[5]
李娟, 朱龙臻, 俎立峰, 等. 一种抑制后续换相失败的电流偏差控制参数整定方法[J]. 电力工程技术, 2024, 43(4): 235-244.
LI Juan, ZHU Longzhen, ZU Lifeng, et al. A current deviation control parameter tuning method to suppress subsequent commutation failure[J]. Electric Power Engineering Technology, 2024, 43(4): 235-244.
[6]
陶亚光, 刘泽辉, 张力, 等. 特高压直流输电线路短路工况下间隔棒向心力动态仿真研究[J]. 电网与清洁能源, 2023, 39(4): 17-24.
TAO Yaguang, LIU Zehui, ZHANG Li, et al. A study on dynamic simulation of spacers' centripetal force under UHVDC short circuit condition[J]. Power System and Clean Energy, 2023, 39(4): 17-24.
[7]
欧阳金鑫, 余建峰, 潘馨钰, 等. 多馈入直流输电系统后续换相失败安全裕度评估及抑制方法[J]. 高电压技术, 2024, 50(7): 2794-2808.
OUYANG Jinxin, YU Jianfeng, PAN Xinyu, et al. Safety margin assessment and suppression method for subsequent commutation failure in multi-infeed LCC-HVDC systems[J]. High Voltage Engineering, 2024, 50(7): 2794-2808.
[8]
易忠山, 李凤婷, 尹纯亚, 等. 直流闭锁下的多馈出直流外送系统无功分布与暂态过电压计算方法[J]. 电网与清洁能源, 2024, 40(12): 10-17.
YI Zhongshan, LI Fengting, YIN Chunya, et al. Reactive power distribution and transient overvoltage calculation method for the multi-outfeed DC system under DC blocking[J]. Power System and Clean Energy, 2024, 40(12): 10-17.
[9]
唐俊, 赵文强, 姜崇学, 等. 混合级联特高压直流输电系统逆变站保护功能及闭锁策略设计[J]. 浙江电力, 2024, 43(10): 103-113.
TANG Jun, ZHAO Wenqiang, JIANG Chongxue, et al. Design of protection functions and block strategies for inverter station of a hybrid cascaded UHVDC transmission system[J]. Zhejiang Electric Power, 2024, 43(10): 103-113.
[10]
胥仲晖, 尹纯亚, 达塔娜, 等. 计及故障分闸角与单相故障的后续换相失败分析[J]. 电网与清洁能源, 2024, 40(10): 67-75.
XU Zhonghui, YIN Chunya, DA Tana, et al. Analysis of subsequent commutation failures with fault division angle and single-phase faults considered[J]. Power System and Clean Energy, 2024, 40(10): 67-75.
[11]
谷相宏, 何茂慧, 孔祥平, 等. 直流线路永久性接地故障环流抑制优化方案[J]. 电力工程技术, 2023, 42(2): 232-240.
GU Xianghong, HE Maohui, KONG Xiangping, et al. Optimized circulating current suppression scheme for permanent DC line grounding fault[J]. Electric Power Engineering Technology, 2023, 42(2): 232-240.
[12]
张帆, 高凯, 杨岳峰, 等. 具备有载调压功能的LCC-HVDC拓扑及控制策略[J]. 电网与清洁能源, 2023, 39(1): 1-10.
ZHANG Fan, GAO Kai, YANG Yuefeng, et al. LCC-HVDC topology with on-load voltage regulation function and its control strategy[J]. Power System and Clean Energy, 2023, 39(1): 1-10.
[13]
贺之渊, 高冲, 丁骁, 等. 多馈入高压直流输电系统换相失败防御技术研究综述[J]. 高电压技术, 2024, 50(7): 2735-2746.
HE Zhiyuan, GAO Chong, DING Xiao, et al. A review of commutation failure prevention technology for multi-infeed HVDC transmission systems[J]. High Voltage Engineering, 2024, 50(7): 2735-2746.
[14]
RESCH S, FRIEDRICH J, WAGNER T, et al. Stability analysis of power hardware-in-the-loop simulations for grid applications[J]. Electronics, 2022, 11(1): 7.
[15]
李国庆, 江守其, 辛业春, 等. 柔性高压直流输电系统数字物理混合仿真功率接口及其算法[J]. 中国电机工程学报, 2016, 36(7): 1915-1924.
LI Guoqing, JIANG Shouqi, XIN Yechun, et al. A novel interface algorithm of power hardware-in-the-loop simulation for MMC-HVDC[J]. Proceedings of the CSEE, 2016, 36(7): 1915-1924.
[16]
辛业春, 江守其, 李国庆, 等. 电力系统数字物理混合仿真接口算法综述[J]. 电力系统自动化, 2016, 40(15): 159-167.
XIN Yechun, JIANG Shouqi, LI Guoqing, et al. Review on interface algorithms of power hardware-in-the-loop simulation for power systems[J]. Automation of Electric Power Systems, 2016, 40(15): 159-167.
[17]
MARKS N D, KONG W Y, BIRT D S. Stability of a switched mode power amplifier interface for power hardware-in-the-loop[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8445-8454.
[18]
胡昱宙, 张沛超, 方陈, 等. 功率连接型数字物理混合仿真系统(一)接口算法特性[J]. 电力系统自动化, 2013, 37(7): 36-41.
HU Yuzhou, ZHANG Peichao, FANG Chen, et al. Power hardware-in-the-loop simulation system part one characteristics of interface algorithms[J]. Automation of Electric Power Systems, 2013, 37(7): 36-41.
[19]
胡涛, 朱艺颖, 张星, 等. 全数字实时仿真装置与物理仿真装置的功率连接技术[J]. 电网技术, 2010, 34(1): 51-55.
HU Tao, ZHU Yiying, ZHANG Xing, et al. Power connection technology for full-digital real-time simulator and analogue simulator[J]. Power System Technology, 2010, 34(1): 51-55.
[20]
胡涛, 朱艺颖, 印永华, 等. 含多回物理直流仿真装置的大电网数模混合仿真建模及研究[J]. 中国电机工程学报, 2012, 32(7): 68-75, 193.
HU Tao, ZHU Yiying, YIN Yonghua, et al. Modeling and study of digital/analog hybrid simulation for bulk grid with multi-analog HVDC simulators[J]. Proceedings of the CSEE, 2012, 32(7): 68-75, 193.
[21]
胡昱宙, 张沛超, 包海龙, 等. 功率连接型数字物理混合仿真系统(二)适应有源被试系统的新型接口算法[J]. 电力系统自动化, 2013, 37(8): 76-81.
HU Yuzhou, ZHANG Peichao, BAO Hailong, et al. A power hardware-in-the-loop simulation system part two A novel interface algorithm adapted to active hardware-under-test[J]. Automation of Electric Power Systems, 2013, 37(8): 76-81.
[22]
杨向真, 孙麒, 杜燕, 等. 功率硬件在环仿真系统性能分析[J]. 电网技术, 2019, 43(1): 251-262.
YANG Xiangzhen, SUN Qi, DU Yan, et al. Performance analysis of power hardware-in-loop simulation[J]. Power System Technology, 2019, 43(1): 251-262.
[23]
HONG Miao, HORIE S, MIURA Y, et al. A method to stabilize a power hardware-in-the-loop simulation of inductor coupled sys tem[C]// Proceeding of International Conference on Power System Transients. Kyoto, Japan. 2009.
[24]
LAUSS G, LEHFUB F, VIEHWEIDER A, et al. Power hardware in the loop simulation with feedback current filtering for electric systems[C]// Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2011.
[25]
PARAN S, EDRINGTON C S. Improved power hardware in the loop interface methods via impedance matching[C]//2013 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2013: 342-346.
[26]
PARAN S, FLEMING F, LI D, et al. Utilization of adaptive PHIL interfaces for harmonic load cases[C]// IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014: 3803-3808.
[27]
乐健, 张好, 李星锐, 等. 基于虚拟电阻补偿的柔性直流输电数模混合仿真系统的功率接口建模方法[J]. 中国电机工程学报, 2018, 38(18): 5352-5360.
LE Jian, ZHANG Hao, LI Xingrui, et al. A power interface modeling method of the digital-physical hybrid simulation system of MMC-HVDC system based on virtual resistance compensation[J]. Proceedings of the CSEE, 2018, 38(18): 5352-5360.
[28]
乐健, 张好, 周谦, 等. 基于虚拟阻抗补偿的数模混合仿真系统功率接口建模方法[J]. 中国电机工程学报, 2019, 39(7): 1996-2005.
LE Jian, ZHANG Hao, ZHOU Qian, et al. A power interface modeling method of the digital-physical hybrid simulation system based on virtual impedance compensation[J]. Proceedings of the CSEE, 2019, 39(7): 1996-2005.
[29]
鄂涛, 尹忠东, 王群飞. 基于虚拟线路补偿的主动配电网混合仿真接口实现方法[J]. 电力工程技术, 2022, 41(3): 133-142.
E Tao, YIN Zhongdong, WANG Qunfei. Implementation method of hybrid simulation interface for active distribution network based on virtual line compensation[J]. Electric Power Engineering Technology, 2022, 41(3): 133-142.
[30]
王钢, 李志铿, 李海锋, 等. 交直流系统的换流器动态相量模型[J]. 中国电机工程学报, 2010, 30(1): 59-64.
WANG Gang, LI Zhikeng, LI Haifeng, et al. Dynamic phasor model of the converter of the AC/DC system[J]. Proceedings of the CSEE, 2010, 30(1): 59-64.
[31]
王钢, 李志铿, 李海锋, 等. HVDC换流器等值谐波阻抗的计算方法[J]. 中国电机工程学报, 2010, 30(19): 64-68.
WANG Gang, LI Zhikeng, LI Haifeng, et al. Calculation method of harmonic equivalent impedances of HVDC converter[J]. Proceedings of the CSEE, 2010, 30(19): 64-68.
[32]
王宾, 何小才. 基于动态相量的LCC-HVDC输电系统等值技术评述[J]. 中国电机工程学报, 2024, 44(1): 58-72.
WANG Bin, HE Xiaocai. Overview of LCC-HVDC transmission system equivalent technology based on dynamic phasor[J]. Proceedings of the CSEE, 2024, 44(1): 58-72.
[33]
王宾, 何小才. 经LCC-HVDC输电送出系统单端混合等值计算[J]. 中国电机工程学报, 2024, 44(14): 5441-5451.
WANG Bin, HE Xiaocai. Single terminal mixed equivalence calculation of power transmission system via LCC-HVDC[J]. Proceedings of the CSEE, 2024, 44(14): 5441-5451.
[34]
江守其, 李国庆, 辛业春, 等. 基于自适应模式切换的MMC-HVDC数字物理混合仿真新型接口算法[J]. 电网技术, 2020, 44(1): 70-78.
JIANG Shouqi, LI Guoqing, XIN Yechun, et al. A novel interface algorithm of power hardware-in-the-loop simulation for MMC-HVDC system based on adaptive mode switching[J]. Power System Technology, 2020, 44(1): 70-78.
[35]
李清, 王拓, 毛炽祖, 等. 计及直流控制特性的混合多馈入直流系统交互作用因子计算方法[J]. 电网技术, 2021, 45(8): 3125-3133.
LI Qing, WANG Tuo, MAO Chizu, et al. Multi-infeed interaction factor calculation of hybrid multi-infeed HVDC system considering DC control characteristics[J]. Power System Technology, 2021, 45(8): 3125-3133.
[36]
张帆, 洪潮, 赵利刚, 等. 考虑直流输电系统小扰动响应特性的多馈入直流相互作用因子计算方法研究[J]. 中国电机工程学报, 2019, 39(18): 5308-5315, 5577.
ZHANG Fan, HONG Chao, ZHAO Ligang, et al. Study on calculation method of multi-infeed HVDC interaction factor considering small disturbance response characteristics of HVDC transmission system[J]. Proceedings of the CSEE, 2019, 39(18): 5308-5315, 5577.
[37]
辛业春, 王威儒, 李国庆, 等. 多端柔性直流输电系统数字物理混合仿真技术[J]. 电网技术, 2018, 42(12): 3903-3909.
XIN Yechun, WANG Weiru, LI Guoqing, et al. Power hardware-in-loop simulation for MMC-MTDC transmission systems[J]. Power System Technology, 2018, 42(12): 3903-3909.

基金

国家重点研发计划项目(2021YFB2400900)

编辑: 景贺峰
PDF(4456 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/