PDF(1058 KB)
复杂故障场景下智能配电网快速抢修二阶段优化调度策略
肖恩颂, 蒋达飞, 金雨含, 孟静, 刘淼, 尹申, 葛磊蛟
电力建设 ›› 2025, Vol. 46 ›› Issue (11) : 99-109.
PDF(1058 KB)
PDF(1058 KB)
复杂故障场景下智能配电网快速抢修二阶段优化调度策略
Two-Stage Optimal Scheduling Strategy for Quick Repair of Intelligent Distribution Network Under Complex Fault Scenario
【目的】 为应对新型电力系统中智能配电网复杂故障场景下抢修任务繁重、资源约束强、调度效率低等问题,提升故障应急响应速度并降低社会经济损失,提出一种考虑强资源约束的配电网快速抢修二阶段优化调度策略。【方法】 一阶段以快速恢复非故障区供电为目标,考虑停电区域配电网网络重构、移动式应急发电车等资源约束,构建以最小化停电时间为目标的配电网快速恢复抢修模型。二阶段针对故障区域内多个抢修任务优化调度难题,设计改进的串行调度生成机制,以供电可靠性等级高低为主要依据形成了串行调度生成机制。进一步,采用改进的飞蛾扑火优化(moth-flame optimization, MFO)算法对二阶段模型进行最优解搜索,保证精度的同时提升了求解速度。【结果】 基于44节点系统的仿真表明:第一阶段节点3、12等关键区域加权失电负荷大,需要优先分配应急发电车辆;第二阶段改进MFO算法收敛速度提高18%,总修复时间缩短14%,经济损失减少0.7%,且算法稳定性优于传统方法。【结论】 两阶段策略通过分阶段协调资源与任务,显著提升了抢修效率;改进MFO算法在强约束多目标优化中表现高效,为智能配电网故障调度提供了新思路,所提优化调度策略具备工程推广价值。
[Objective] This study proposes a two-phase optimal scheduling strategy for the rapid repair of distribution grids that considers strong resource constraints to cope with the problems of heavy repair tasks, strong resource constraints, and low dispatch efficiency under complex fault scenarios of smart distribution grids in new power systems; to improve the emergency response speed to faults; and to reduce socioeconomic losses. [Methods] The first phase aims to rapidly restore power supply to non-failed areas, considering constraints such as the reconstruction of the distribution network in the power outage area and the availability of mobile emergency power generation vehicles. A distribution network rapid restoration repair model is constructed with the objective of minimizing the power outage duration. The second stage addresses the challenge of optimizing the scheduling of multiple repair tasks within a faulted area. An improved serial scheduling generation mechanism is designed, based primarily on the reliability level of the power supply. Furthermore, an improved moth-flame optimization (MFO) algorithm is employed to search for the optimal solution for the second-stage model, ensuring accuracy while improving the solution speed. [Results] Simulations based on a 44-node system indicated that nodes 3 and 12 in the first stage caused a loss of power to the primary loads with a significant weighted loss of the load. Priority allocation of emergency power generation vehicles was required. In the second stage, the improved MFO algorithm achieved an 18% increase in the convergence speed, a 14% reduction in the total repair time, 0.7% reduction in economic losses, and superior algorithm stability compared with traditional methods. [Conclusions] The two-stage strategy significantly improved repair efficiency by coordinating resources and tasks in stages. The improved MFO algorithm performed efficiently in strong-constraint multi-objective optimization, providing new ideas for intelligent distribution network fault dispatching. The proposed optimized dispatching strategy has engineering application value.
配电网抢修 / 大规模电源故障 / 抢修任务调度 / 多目标模型 / 飞蛾扑火优化(MFO)算法
distribution network repair / large-scale power failure / scheduling of emergency repairs / multi-objective model / moth-flame optimization (MFO) algorithm
| [1] |
|
| [2] |
王振浩, 王欣铎, 李金伦, 等. 风电经柔性直流组网系统受端交流故障过电压分析及穿越策略[J]. 南方电网技术, 2023, 17(8): 11-22.
|
| [3] |
葛磊蛟, 杜天硕, 孙冰. 分布式光伏功率数据的IMOWOA和LightGBM混合虚拟采集方法[J]. 中国电机工程学报, 2024, 44(3): 1035-1047.
|
| [4] |
王瑞梅, 丛伟, 王泽乾, 等. 基于工作电压相位比较的智能配电网故障判断方法[J]. 供用电, 2023, 40(6): 26-33.
|
| [5] |
黄奇峰, 方凯杰, 黄艺璇, 等. 面向台区虚拟增容的需求侧资源多目标优化调度方法[J]. 供用电, 2023, 40(11): 61-68.
|
| [6] |
|
| [7] |
王可淇, 赵子涵, 钟俊, 等. 基于改进模拟退火遗传算法的配电网动态故障恢复策略[J]. 智慧电力, 2024, 52(6): 16-22.
|
| [8] |
胡一鸣, 史鸿飞, 张玉龙, 等. 基于行波全景故障特征自辨识的高阻接地故障检测方法[J]. 供用电, 2023, 40(4): 39-46, 54.
|
| [9] |
张亚超, 丁志龙, 谢仕炜, 等. 面向能源互联网的配电网韧性提升研究综述及展望[J]. 电网技术, 2023, 47(5): 2054-2069.
|
| [10] |
|
| [11] |
陈春, 万金金, 曹一家, 等. 极端条件下多源配电网主动孤岛研究综述与展望[J]. 电力科学与技术学报, 2024, 39(5): 1-11.
|
| [12] |
侯祖锋, 王超, 徐春华, 等. 考虑负荷重要程度的配电网韧性提升策略及评估方法[J]. 电力科学与技术学报, 2024, 39(3): 78-85.
|
| [13] |
杨德昌, 吴燕,
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22.
|
| [21] |
杨丽君, 赵宇, 赵优, 等. 考虑交通路网应急电源车调度的有源配电网故障均衡恢复[J]. 电力系统自动化, 2021, 45(21): 170-180.
|
| [22] |
董志辉, 林凌雪, 管霖, 等. 基于多代理技术的有源配电网供电恢复策略[J]. 电力自动化设备, 2019, 39(5): 22-29.
|
| [23] |
徐岩, 张荟, 马天祥, 等. 含分布式电源的配电网故障紧急恢复与抢修协调优化策略[J]. 电力系统自动化, 2021, 45(22): 38-46.
|
| [24] |
白牧可, 刘洁, 钱志研, 等. 交直流复杂配电网故障恢复重构的双层多目标优化策略[J]. 智慧电力, 2024, 52(12): 80-87.
|
| [25] |
|
| [26] |
孟俊姣. 基于任务的配电网抢修资源配置与调度研究[D]. 北京: 华北电力大学, 2014.
|
| [27] |
赵晶晶, 刘帅, 李梓博, 等. 考虑SMESS的多阶段配电网弹性提升策略[J]. 智慧电力, 2023, 51(5): 103-110.
|
| [28] |
姚卓磊, 黄文焘, 余墨多, 等. 智能配电网电力-通信灾害故障动态协调恢复方法[J]. 电力系统自动化, 2022, 46(19): 87-94.
|
| [29] |
侯慧, 刘超, 陈希, 等. 台风灾害下配网两阶段应急抢修恢复优化策略[J]. 电力系统保护与控制, 2022, 50(23): 169-179.
|
| [30] |
|
| [31] |
|
| [32] |
李丹丹, 吴宇翔, 朱聪聪, 等. 基于麻雀搜索与遗传算法的J-A磁滞模型参数辨识方法[J]. 高电压技术, 2022, 48(10): 4181-4188.
|
| [33] |
孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J]. 电子测量技术, 2021, 44(20): 82-87.
|
| [34] |
钟世云, 张屹, 戴杰, 等. 基于改进灰狼优化算法的支持向量回归预测[J]. 计算机测量与控制, 2023, 31(7): 8-14.
|
AI小编
/
| 〈 |
|
〉 |