Optimal Charging and Discharging Strategies for Electric Vehicle Clusters Considering Power Peak Shaving

ZHAO Linxin, LI Chengxin, GUI Jiangyi, LIU Lin

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 24-34.

PDF(3670 KB)
PDF(3670 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 24-34. DOI: 10.12204/j.issn.1000-7229.2025.11.003
Planning and Operation Key Technologies for Source-Network-Load-Storage New Distribution System·Hosted by DONG Xuzhu,SHANG Lei,LI Hongjun·

Optimal Charging and Discharging Strategies for Electric Vehicle Clusters Considering Power Peak Shaving

Author information +
History +

Abstract

[Objective] In a source-grid-load-storage system incorporating renewable energy, an electric vehicle (EV) cluster charging and discharging strategy optimization model is established to optimize the revenues of EV users and load aggregators participating in peak-shaving ancillary services, considering the peak-shaving demand levels across different time periods.[Methods] First, the peak-shaving demand for each time period under renewable energy production scenarios was assessed. Second, based on the level of the peak-shaving demand in each time period, an optimization model for the charging and discharging strategy of the EV cluster was developed to maximize the total expected revenue for both load aggregators and EV users. Finally, to prevent peak load occurrences after participating in peak-shaving services, the charging and discharging strategy for subsequent time periods were optimized to minimize load fluctuations.[Results] The case analysis demonstrated that the proposed charging and discharging strategy assisted in smoothing the electricity load during peak periods, maximized the total expected revenue for load aggregators and EV users, and mitigated the occurrence of load peaks after participating in peak-shaving services.[Conclusions] The strategy proposed in this study significantly improved the benefits for EV users and load aggregators compared with the strategy without considering participation in the peak-shaving service, and the load fluctuations in the subsequent period of peak shaving were significantly reduced that verified the practicality and effectiveness of the proposed method.

Key words

source-grid-load-storage system / electric vehicle (EV) users / load aggregators / peak-shaving ancillary services / EV cluster charging and discharging strategy optimization / load peaks

Cite this article

Download Citations
ZHAO Linxin , LI Chengxin , GUI Jiangyi , et al. Optimal Charging and Discharging Strategies for Electric Vehicle Clusters Considering Power Peak Shaving[J]. Electric Power Construction. 2025, 46(11): 24-34 https://doi.org/10.12204/j.issn.1000-7229.2025.11.003

References

[1]
孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15): 3264-3271.
SUN Hui, ZHAI Haibao, WU Xin. Research and application of multi-energy coordinated control of generation, network, load and storage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3264-3271.
[2]
赵冬梅, 宋晨铭, 冯向阳, 等. 100%新能源场景下考虑频率稳定约束的源网荷储一体化系统储能优化配置[J]. 电工技术学报, 2025, 40(7): 2146-2161.
ZHAO Dongmei, SONG Chenming, FENG Xiangyang, et al. The optimal configuration of energy storage in the source-grid-load-storage integrated system considering frequency stability constraints in 100% new energy scenarios[J]. Transactions of China Electrotechnical Society, 2025, 40(7): 2146-2161.
[3]
姚建国, 杨胜春, 王珂, 等. 智能电网“源-网-荷” 互动运行控制概念及研究框架[J]. 电力系统自动化, 2012, 36(21): 1-6, 12.
YAO Jianguo, YANG Shengchun, WANG Ke, et al. Concept and research framework of smart grid “source-grid-load” interactive operation and control[J]. Automation of Electric Power Systems, 2012, 36(21): 1-6, 12.
[4]
王琼, 邹晴, 李乐, 等. 基于多智能体强化学习的电动汽车充放电调控算法[J]. 供用电, 2023, 40(9): 83-90.
WANG Qiong, ZOU Qing, LI Le, et al. Multi-agent reinforcement learning algorithm for charging/discharging control of electric vehicles[J]. Distribution & Utilization, 2023, 40(9): 83-90.
[5]
张琳娟, 周志恒, 陈婧华, 等. 含电动汽车的县域光伏台区储能容量优化配置研究[J]. 供用电, 2024, 41(10): 101-113.
ZHANG Linjuan, ZHOU Zhiheng, CHEN Jinghua, et al. Research on optimal allocation of energy storage capacity in county photovoltaic distribution station area with electric vehicles[J]. Distribution & Utilization, 2024, 41(10): 101-113.
[6]
吴永孝, 肖辉, 曾林俊, 等. 考虑供需双边响应的综合能源系统优化调度[J]. 电力建设, 2024, 45(10): 13-23.
WU Yongxiao, XIAO Hui, ZENG Linjun, et al. Optimal scheduling of integrated energy systems considering bilateral response of supply and demand[J]. Electric Power Construction, 2024, 45(10): 13-23.
[7]
陈文颖, 刘蓓迪. 基于粒子群算法的电动汽车有序充放电优化[J]. 山东电力技术, 2023, 50(1): 52-58.
CHEN Wenying, LIU Beidi. Sequential charging and discharging optimization of electric vehicles based on particle swarm optimization[J]. Shandong Electric Power, 2023, 50(1): 52-58.
[8]
侯永全, 徐敦彬, 袁晓冬, 等. 基于博弈论的含氢微网多主体能源系统优化配置[J]. 高压电器, 2024, 60(7): 48-59.
HOU Yongquan, XU Dunbin, YUAN Xiaodong, et al. Optimized allocation of hydrogen-containing micro grid multi-subject energy system based on game theory[J]. High Voltage Apparatus, 2024, 60(7): 48-59.
[9]
娄奇鹤, 李彦斌, 赵宇尘, 等. 适应极端事件的配电网弹性规划和投资策略研究综述[J]. 电力建设, 2024, 45(5): 37-47.
Abstract
随着分布式电源、电动汽车等多元新要素新业态规模化发展,叠加洪涝、台风等极端事件频发,配电网规划设计和投资决策面临巨大挑战,然而传统配电网规划没有充分调动新要素新业态对电力系统的支撑作用。首先,梳理了极端事件影响量化方法、弹性规划、投资策略的研究现状,并对现有投资成效评价方法进行了归纳整理,最后结合适应极端事件的配电网发展诉求,对弹性规划和投资策略优化的未来研究方向提出展望。
LOU Qihe, LI Yanbin, ZHAO Yuchen, et al. A review of research on resilience planning and investment strategies for distribution networks adapted to extreme events[J]. Electric Power Construction, 2024, 45(5): 37-47.
Abstract

With the large-scale development of distributed power supply, electric vehicles and other diversified new elements of the new industry, superimposed on the frequent occurrence of floods, typhoons and other extreme events, the distribution network planning, design and investment decision-making faces great challenges. However, the traditional distribution network planning has not fully mobilized the new elements and new industries to support the power system. The paper firstly combs through the research status quo of extreme event impact quantification methods, resilience planning, and investment strategy, and summarizes the existing investment effectiveness evaluation methods, and finally combines the distribution network development demands adapted to extreme events, and puts forward an outlook on the future research direction of resilience planning and investment strategy optimization.

[10]
葛乐, 王庆园, 王明深, 等. 考虑充放电激励机制的电动汽车聚合商参与能量-调频市场多阶段运营策略[J]. 电力自动化设备, 2024, 44(6): 176-184.
GE Le, WANG Qingyuan, WANG Mingshen, et al. Multi-stage operation strategy of electric vehicle aggregator participating in energy and frequency regulation markets considering charging and discharging incentive mechanisms[J]. Electric Power Automation Equipment, 2024, 44(6): 176-184.
[11]
LIU H, QI J J, WANG J H, et al. EV dispatch control for supplementary frequency regulation considering the expectation of EV owners[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3763-3772.
[12]
付卓铭, 胡俊杰, 马文帅, 等. 规模化电动汽车参与电力系统二次调频研究综述[J]. 电力建设, 2023, 44(2): 1-14.
Abstract
大规模可再生能源并入电网使电力系统频率稳定支撑能力下降,给电力系统二次调频带来新的问题与挑战,电动汽车由于集群庞大且具有准确快速的动态响应能力而成为新型调频资源。首先,对规模化电动汽车参与调频辅助服务系统框架进行总结,从可调节容量直接量化和能量可行域两方面对电动汽车集群可调节容量量化方法进行归纳;然后,从模型、方法和应用等多个角度,对电动汽车参与电力系统二次调频的日前优化调度和实时控制过程展开综述;最后,对规模化电动汽车参与电力系统二次调频未来的研究方向和关键技术进行了展望。
FU Zhuoming, HU Junjie, MA Wenshuai, et al. Review of research on participation of numerous electric vehicles in power system secondary frequency-regulation service[J]. Electric Power Construction, 2023, 44(2): 1-14.

The connection of large-scale renewable energy to the power grid reduces the frequency stability of the power system, which brings new problems and challenges to the secondary frequency regulation of the power system. With a large cluster, the electric vehicles have become a new type of frequency-regulation resources due to its accurate and fast dynamic response capability. This paper first summarizes the system framework of numerous electric vehicles participating in frequency-regulation ancillary service and introduces two methods to quantify the adjustable capacity of aggregated electric vehicles. One method quantifies the adjustable capacity of the aggregated electric vehicles directly, and another one presents the energy feasible region of the aggregated electric vehicles. Then, the day-ahead optimal scheduling and the real-time control process of electric vehicles participating in secondary frequency regulation of the power system are reviewed from different aspects: model, method, and application. Finally, the future research direction and key technologies of numerous electric vehicles participating in secondary frequency regulation of the power system are prospected.

[13]
戴朝华, 杨帅, 叶圣永, 等. 供需双方博弈视角下的V2G优化策略[J]. 西南交通大学学报, 2025, 60(1): 166-174, 193.
DAI Chaohua, YANG Shuai, YE Shengyong, et al. Vehicle to grid optimization strategy from the perspective of supply and demand game[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 166-174, 193.
[14]
江建, 张树森, 徐峰亮. 考虑电动汽车集群响应的分布式资源协同调度策略研究[J]. 山东电力技术, 2024, 51(6): 1-11, 35.
JIANG Jian, ZHANG Shusen, XU Fengliang. Research on the collaborative dispatch strategy of distributed resources considering the response of electric vehicle cluster[J]. Shandong Electric Power, 2024, 51(6): 1-11, 35.
[15]
高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47(18): 60-67.
GAO Shuang, DAI Ruxin. Charging control strategy for electric vehicle aggregation participating in frequency regulation ancillary service market[J]. Automation of Electric Power Systems, 2023, 47(18): 60-67.
[16]
房宇轩, 胡俊杰, 马文帅. 计及用户意愿的电动汽车聚合商主从博弈优化调度策略[J]. 电工技术学报, 2024, 39(16): 5091-5103.
FANG Yuxuan, HU Junjie, MA Wenshuai. Optimal dispatch strategy for electric vehicle aggregators based on Stackelberg game theory considering user intention[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5091-5103.
[17]
程飞, 郭春林, 高泽阳, 等. 参与电网削峰调节的电动重卡换电站调度策略[J]. 电力系统自动化, 2024, 48(9): 120-128.
CHENG Fei, GUO Chunlin, GAO Zeyang, et al. Scheduling strategy of battery swapping stations for electric heavy-duty trucks participating in power grid peak-shaving regulation[J]. Automation of Electric Power Systems, 2024, 48(9): 120-128.
[18]
王炜歆, 张露元, 王小君, 等. 计及电动汽车引导和网络重构的配电网负荷恢复策略[J]. 山东电力技术, 2024, 51(8): 18-26.
WANG Weixin, ZHANG Luyuan, WANG Xiaojun, et al. Load restoration strategy of distribution system considering electric vehicle guiding and network reconfiguration[J]. Shandong Electric Power, 2024, 51(8): 18-26.
[19]
辛昊, 严正, 许少伦. 基于多代理系统的电动汽车协调充电策略[J]. 电网技术, 2015, 39(1): 48-54.
XIN Hao, YAN Zheng, XU Shaolun. Multi-agent system based coordinated charging strategy for electric vehicles[J]. Power System Technology, 2015, 39(1): 48-54.
[20]
张婷婷. 考虑经济物理约束的电动汽车负荷聚合可调节容量评估[D]. 北京: 华北电力大学, 2022.
ZHANG Tingting. Evaluation of adjustable capacity of electric vehicle load aggregation considering economic and physical constraints[D]. Beijing: North China Electric Power University, 2022.
[21]
卢有飞, 邹时容, 刘璐豪, 等. 基于知识共享的高比例可再生能源系统发电控制[J]. 高压电器, 2024, 60(10): 33-45.
LU Youfei, ZOU Shirong, LIU Luhao, et al. Generation control of high percentage renewable energy systems based on knowledge sharing[J]. High Voltage Apparatus, 2024, 60(10): 33-45.
[22]
杨本星, 王伟, 杨明轩, 等. 辅助风电并网的构网型储能控制策略研究[J]. 高压电器, 2023, 59(7): 56-64.
YANG Benxing, WANG Wei, YANG Mingxuan, et al. Research on grid-forming energy storage control strategy for auxiliary wind power grid-connection[J]. High Voltage Apparatus, 2023, 59(7): 56-64.
[23]
王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1869.
WANG Shouxiang, CHEN Haiwen, LI Xiaoping, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42(6): 1860-1869.
[24]
惠振国, 艾澜, 常鹏霞, 等. 计及风光出力相关性的风光水储互补系统优化调度[J]. 水电能源科学, 2024, 42(8): 218-222.
HUI Zhenguo, AI Lan, CHANG Pengxia, et al. Optimal scheduling of wind-solar-water-storage complementary system considering the correlation of wind-solar output[J]. Water Resources and Power, 2024, 42(8): 218-222.
[25]
李鹏, 朱洪泽, 骆光杰, 等. 基于ARMA模型的海上风机随机风场模拟[J]. 武汉大学学报(工学版), 2024, 57(1): 112-120.
LI Peng, ZHU Hongze, LUO Guangjie, et al. Simulation of stochastic wind field of offshore wind turbines based on ARMA model[J]. Engineering Journal of Wuhan University, 2024, 57(1): 112-120.
[26]
董文略, 王群, 杨莉. 含风光水的虚拟电厂与配电公司协调调度模型[J]. 电力系统自动化, 2015, 39(9): 75-81, 207.
DONG Wenlue, WANG Qun, YANG Li. A coordinated dispatching model for a distribution utility and virtual power plants with wind/photovoltaic/hydro generators[J]. Automation of Electric Power Systems, 2015, 39(9): 75-81, 207.
[27]
U.S. Department of Transportation, Federal Highway Administration. The 2017 national household travel survey[EB/OL]. [2024-07-15]. https://nhts.ornl.gov/.
[28]
李军, 梁嘉诚, 刘克天, 等. 计及用户响应度的电动汽车充放电优化调度策略[J]. 南方电网技术, 2023, 17(8): 123-132.
LI Jun, LIANG Jiacheng, LIU Ketian, et al. Optimal scheduling strategy for electric vehicles charging and discharging considering user responsiveness[J]. Southern Power System Technology, 2023, 17(8): 123-132.
[29]
NEUBAUER J, WOOD E. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility[J]. Journal of Power Sources, 2014, 257: 12-20.

Funding

The Natural Science Foundation of Sichuan Province(2022NSFSC0206)
PDF(3670 KB)

Accesses

Citation

Detail

Sections
Recommended

/