PDF(9296 KB)
Expert System for BIM 3D Design in Power Transmission and Transformation Engineering Supported by Large Language Model
QI Lizhong, RONG Jingguo, ZHANG Su, HE Xing, LI Xiangzhong
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 47-57.
PDF(9296 KB)
PDF(9296 KB)
Expert System for BIM 3D Design in Power Transmission and Transformation Engineering Supported by Large Language Model
[Objective] To address the issues of insufficient integration of traditional tool specifications and low efficiency in design validation in the 3D design for power transmission and transformation projects, this study explores the collaborative mechanism between BIM and large language models to construct an intelligent design assistance system that enhances dynamic specification mapping and knowledge service capabilities. [Methods] A large language model-powered BIM 3D design expert system is proposed. The Qwen 2.5 model is used to parse the specifications of power transmission and transformation projects, extract triplet structures, and build a knowledge graph. A hybrid retrieval framework is developed to dynamically map BIM component attributes with knowledge entities, enhanced by vector-based knowledge databases for improved semantic matching. RAG technology is integrated to build a question-answering system, enabling intelligent interaction between the 3D models and specification data via the BIMBase platform. [Results] The application at a Xuzhou substation demonstrated that 1) the knowledge graph triplet extraction accuracy reached 92%, 2) the coverage rate of BIM component-to-specification mapping achieved 85%, and 3) the question-answering system had a response time of 1.5 s, with a professional answer accuracy of 94% (a 31.2% improvement over the baseline). [Conclusion] This study established an innovative dynamic collaboration mechanism between BIM and large language models, validating the effectiveness of knowledge graph-enhanced retrieval in power engineering design. Through bidirectional mapping between specifications and models and intelligent question-answering, the system significantly improved the design quality, providing a scalable technical paradigm for smart grids.
transmission and transformation engineering / large language model / building information modeling(BIM) / knowledge graph / question answering system
| [1] |
周圣栋, 解蕾, 宋若晨, 等. 基于BIM的变电站数字化建设管控平台构建及应用[J]. 中国电力, 2019, 52(5): 142-147.
|
| [2] |
官澜, 李奥森, 韩念遐, 等. 基于数字化三维模型的架空输电线路设计[J]. 电测与仪表, 2020, 57(3): 105-109.
|
| [3] |
同嘉. 基于BIM全景可视化的架空电力线磁场三维仿真计算研究[J]. 高压电器, 2020, 56(3): 169-175.
|
| [4] |
张广平, 何世洋, 任鹏飞, 等. BIM技术在750千伏变电站设计的应用[J]. 建筑结构, 2021, 51(S1): 1234-1238.
|
| [5] |
|
| [6] |
齐立忠, 刘定, 张卓群, 等. 基于BIM技术的特高压工程数字化建设综述[J]. 电力建设, 2025, 46(2): 61-73.
|
| [7] |
王兴华, 王彦峰, 雷翔胜, 等. 电气设备在BIM与GIS中的几何与语义一致性[J]. 南方电网技术, 2022, 16(12): 29-37.
|
| [8] |
周亮, 蔡钧, 丁一波, 等. 基于IFC的输变电工程三维数字化管理平台研究[J]. 电网与清洁能源, 2015, 31(11): 7-12.
|
| [9] |
李燕, 郭嘉成, 冯笑峰, 等. 智慧基建背景下基于BIM技术的输变电工程全生命周期造价管理研究[J]. 建筑经济, 2022, 43(10): 58-65.
|
| [10] |
杜春宇, 周亮, 陈培智, 等. 基于BIM的输变电工程自动算量分析研究[J]. 建筑经济, 2020, 41(10): 64-68.
|
| [11] |
任春光, 孟长虹, 史卓鹏, 等. 智能变电站施工控制的三维可视化系统研究和设计[J]. 制造业自动化, 2023, 45(9): 79-83.
|
| [12] |
|
| [13] |
|
| [14] |
徐涛, 邹泽华, 胡仁焱, 等. 基于BiGRU+CRF深度学习模型的水电站调度运行知识图谱构建方法[J]. 电力科学与技术学报, 2025, 40(1): 180-189.
|
| [15] |
|
| [16] |
覃思中, 郑哲, 顾燚, 等. 大语言模型在建筑工程中的应用测试与讨论[J]. 工业建筑, 2023, 53(9): 162-169.
|
| [17] |
姜文明, 齐立忠, 张苏, 等. 基于知识图谱的电网工程建筑信息模型质量检查方法[J]. 吉林大学学报(工学版), 2024, 54(3): 807-814.
|
| [18] |
肖发龙, 吴岳忠, 沈雪豪, 等. 基于深度学习和知识图谱的变电站设备故障智能诊断[J]. 电力建设, 2022, 43(3): 66-74.
及时发现并诊断变电站运行中设备存在的问题,是保障电网安全运行的关键手段之一。基于深度网络与知识图谱技术,提出一种关联变电站设备多模态信息的故障智能诊断方法。利用深度学习技术和知识图谱方法对采集的多模态数据进行知识提取和融合,构建一个多模态信息融合的语义知识图谱;使用YOLOv4算法对故障样本聚类并提取先验框参数;将多模态知识图谱和YOLOv4视觉检测相结合,应用到变电站场景中,实现变电站设备的自主预警诊断。实验表明,该模型可以实现故障诊断决策智能化的目标,从而提高电网的日常运行、维护和管理效率。
Finding and diagnosing problems in the operation of substation equipment in time is one of the key means to ensure the safe operation of power grids. On the basis of the research of deep network and knowledge graph, this paper proposes an intelligent fault diagnosis method that correlates multi-modal information of substation equipment. Deep learning technology and knowledge graph method are used to extract and fuse knowledge from the collected multi-modal data, and a semantic knowledge graph of multi-modal information fusion is constructed. YOLOv4 algorithm is used to cluster fault samples and extract prior bounding box parameters. The multi-modal knowledge map and YOLOv4 visual inspection are combined together and applied to the substation scene to realize the autonomous early warning and diagnosis of the substation equipment. Experiments show that the model can achieve the goal of intelligent decision-making of fault diagnosis, thereby improving the efficiency of daily operation, maintenance and management of power grid. |
| [19] |
田雪涵, 董坤, 赵剑锋, 等. 基于增强优化预训练语言模型的电力数据实体识别方法[J]. 智慧电力, 2024, 52(6): 100-107.
|
| [20] |
王合庆, 魏杰, 景红雨, 等. Meta-RAG: 基于元数据驱动的电力领域检索增强生成框架[J/OL]. 计算机工程, 2024: 1-11. (2024-12-25) [2025-04-23]. https://doi.org/10.19678/j.issn.1000-3428.0070415.
|
| [21] |
马超, 李武峰, 陈羽飞, 等. ChatGPT类大语言模型赋能电力标准数字化转型的核心技术、技术特征及应用展望[J]. 高电压技术, 2025, 51(4): 1727-1746.
|
| [22] |
李莉, 时榕良, 郭旭, 等. 融合大模型与图神经网络的电力设备缺陷诊断[J]. 计算机科学与探索, 2024, 18(10): 2643-2655.
电力系统中不同装置设备的缺陷评级和分析处理常受运维人员主观性影响,导致同一缺陷文本描述出现不同的严重程度评级。专业知识的差异也导致诊断分析差异和诊断效率不同。为提升缺陷诊断的准确性和效率,提出一种基于图神经网络的缺陷文本评级分类方法和大模型智能诊断分析助手。构建专业词典,使用自然语言处理算法规范化文本描述。通过统计方法,优化缺陷文本的语义表示。集成图注意力神经网络和RoBERTa模型对缺陷文本进行精确评级分类。基于大语言模型Qwen1.5-14B-Chat进行低秩适配(LoRA)微调训练得到电力设备诊断大模型Qwen-ElecDiag,结合检索增强生成技术开发设备缺陷诊断助手。此外,整理提供微调电力设备诊断大模型的指令数据集。对比实验结果表明,提出的基于图神经网络的缺陷评级分类方法在准确性上较最优基准模型BERT提升近8个百分点;诊断助手的电力知识以及缺陷诊断能力得到提升。通过提高缺陷评级的准确率并提供全面专业化诊断建议,不仅提高电力设备运维的智能化水平,也为其他垂直领域的智能运维提供新的解决方案。
|
| [23] |
曹祎, 张莉, 郭静, 等. 基于大语言模型的低碳电力市场发展应用前景[J]. 智慧电力, 2024, 52(2): 8-16.
|
| [24] |
牛泽原, 李嘉媚, 艾芊. 大语言模型在电力系统中的应用初探[J]. 电网技术, 2025, 49(4): 1327-1336.
|
| [25] |
贾震江, 刘宇穗. 协同、 三维设计技术在数字化电厂建设中的应用[J]. 电力建设, 2011, 32(4): 83-86.
数字化电厂由于其在电厂安全、经济、高效运行管理中逐渐凸显优势,因而越来越受到各方的关注,如何打造数字化电厂,已经成为各方研究和探讨的议题。结合广东省电力设计研究院在数字化电厂建设方面进行的实践探索,从协同设计技术以及三维设计技术2 方面加以研究和分析,以期为进一步推动数字化电厂的建设提供参考。
|
| [26] |
胡君慧, 盛大凯, 郄鑫, 等. 构建数字化设计体系, 引领电网建设发展方向[J]. 电力建设, 2012, 33(12): 1-5.
深入分析电网企业与输变电设计单位的数字化设计需求,建立数字化设计技术体系,以需求推动国内数字化设计技术的发展。确定规则引导设计单位的信息化建设方向,实现设计信息在电网工程全寿命期的共享,确保信息的确定性、完整性、唯一性。以数字化设计技术体系为依托,提高设计单位的劳动生产率,保证设计成品质量,促进输变电设计与电网建设、管理的协调发展,实现共赢。
Based on an in-depth analysis of the digital design needs of power grid enterprises and power design enterprises, a digital design technological system was established for promoting the development of digital design technology in China. Rules were formulated for guiding the direction of information construction of power design enterprises so as to realize sharing of design information in the whole life cycle of the power projects and to ensure the certainty, integrity and uniqueness of information. The digital design technology system can be used as platform to improve the labor productivity of design enterprises, ensure the design quality of the finished products, and promote the coordinated development of power transmission & transformation design, power grid construction and management for achieving a win-win situation. |
| [27] |
韩文军, 王庭华, 彭晶, 等. 输变电工程数据管理技术标准体系框架研究[J]. 科技管理研究, 2018, 38(22): 224-229.
|
| [28] |
输变电工程数据移交规范: GB/T 38436—2019[S]. 北京: 中国标准出版社, 2019.
Engineering data handover specification for power transmission and transformation: GB/T 38436—2019[S]. Beijing: Standards Press of China, 2019.
|
| [29] |
任海玉, 刘建平, 王健, 等. 基于大语言模型的智能问答系统研究综述[J]. 计算机工程与应用, 2025, 61(7): 1-24.
智能问答是自然语言处理中的一个核心的子领域,旨在理解并回答用户提出的自然语言问题的系统。传统的问答系统通常依赖于预定义的规则和有限的语料库,无法处理复杂的多轮对话。大语言模型是一种基于深度学习技术的自然语言处理模型,拥有数十亿甚至上千亿个参数,不仅能够理解和生成自然语言,还能显著提升问答系统的准确性和效率,推动智能问答技术的发展。近年来,基于大模型技术的智能问答逐渐成为研究热点,但对该领域的系统性综述仍然较为欠缺。因此,针对大模型的智能问答系统进行系统综述,介绍了问答系统的基本概念和数据集及其评价指标;介绍了基于大模型的问答系统,其中包括基于提示学习的问答系统、基于知识图谱的问答系统、基于检索增强生成的问答系统和基于智能代理的问答系统以及微调在问答任务中的技术路线,并对比了五种方法在问答系统中的优缺点和应用场景;对于当前基于大语言模型的问答系统面临的研究挑战和未来发展趋势进行了总结。
|
| [30] |
王思丽, 李慧佳, 孟庆洪, 等. 基于深度学习模型的领域知识库语义检索服务实现研究[J]. 图书馆学研究, 2024(10): 40-49.
|
| [31] |
王帅, 何文春, 王甫棣, 等. 大语言模型融合知识图谱与向量检索的问答系统[J]. 科学技术与工程, 2024, 24(32): 13902-13910.
|
| [32] |
黄立新, 马恩成, 张晓龙, 等. PKPM的“BIM数据中心及协同设计平台”[J]. 建筑科学, 2018, 34(9): 42-49, 129.
|
| [33] |
|
| [34] |
电力规划设计总院. 输变电工程三维设计模型交互及建模规范: NB/T 11199—2023[S/OL]. (2023-05-26)[2025-01-29]. https://hbba.sacinfo.org.cn/stdDetail/4fd5f719c3fe7d98ff5a904344b104a4f06c6991f1e3cee101d33cb52a9d2a6c.
|
/
| 〈 |
|
〉 |