Low-carbon Optimal Operation of Heterogeneous Energy Flow System Considering Hydrogen Energy Flow and Generalized Energy Storage

MA Chenglian, LI Hao, WEI Gang, LAN Bing, ZHAO Yu, SUN Li

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 83-98.

PDF(3480 KB)
PDF(3480 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 83-98. DOI: 10.12204/j.issn.1000-7229.2025.11.008
Dispatch & Operation

Low-carbon Optimal Operation of Heterogeneous Energy Flow System Considering Hydrogen Energy Flow and Generalized Energy Storage

Author information +
History +

Abstract

[Objective] The large-scale integration of high-proportion renewable energy often results in imbalances between supply and demand in heterogeneous energy flow systems (HEFS). To address the challenges associated with renewable energy consumption, this study investigates a low-carbon coordinated control strategy for HEFS incorporating hydrogen energy flow and generalized energy storage.[Methods] First, considering the multi-energy flow interactions involving hydrogen energy and the flexible regulation capabilities of generalized energy storage, a set of evaluation indicators, including comprehensive cost, renewable energy (wind and solar) consumption rate, and carbon emissions, was established to assess the overall benefits of optimal system operation. Second, a carbon flow topology model was developed based on energy flow interactions and system carbon emission data. This model was used to incorporate carbon flow information into the evaluation process, supporting the analysis of multi-objective optimization results. Finally, a practical regional energy system in Northeast China was simulated to examine the collaborative interaction dynamics among energy sources and load storages, as well as to evaluate the optimization effects of hydrogen energy flow and generalized energy storage on the system's overall performance.[Results] Simulation results demonstrate that the integration of hydrogen energy flow and generalized energy storage significantly improves the renewable energy consumption capacity of the heterogeneous energy flow system. These findings validate the effectiveness and practical feasibility of the proposed method.[Conclusions] By enabling the flexible interaction between electricity, heat, and hydrogen energy flows, the proposed approach facilitates the comprehensive utilization of energy resources, enhances the system's dynamic regulation capability, and effectively promotes the penetration of low-carbon energy. The incorporation of generalized energy storage further supports low-carbon energy consumption by enabling peak shaving and valley filling, thereby advancing the transition of heterogeneous energy flow systems toward efficiency, cleanliness, and low-carbon operation. Carbon flow analysis during representative periods reveals that the combined application of hydrogen energy flow and generalized energy storage effectively mitigates supply-demand imbalances, contributing to the realization of low-carbon system operations. The coordinated control strategy proposed in this study provides novel insights and practical methodologies for improving renewable energy integration in heterogeneous energy flow systems and holds strong potential for real-world engineering applications.

Key words

hydrogen energy flow / generalized energy storage / heterogeneous energy flow system(HEFS) / carbon flow / low-carbon operation

Cite this article

Download Citations
MA Chenglian , LI Hao , WEI Gang , et al . Low-carbon Optimal Operation of Heterogeneous Energy Flow System Considering Hydrogen Energy Flow and Generalized Energy Storage[J]. Electric Power Construction. 2025, 46(11): 83-98 https://doi.org/10.12204/j.issn.1000-7229.2025.11.008

References

[1]
舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[2]
马成廉, 赵宇, 宋萌清, 等. 基于新能源发电品质量化与负荷时序匹配的功率品质划分模型研究[J]. 东北电力大学学报, 2024, 44(2): 42-50, 78.
MA Chenglian, ZHAO Yu, SONG Mengqing, et al. Research on power quality segmentation model based on new energy power generation quality quantification and load timing matching[J]. Journal of Northeast Electric Power University, 2024, 44(2): 42-50, 78.
[3]
张婷, 马裕泽, 乌云娜. “双碳” 目标下共享储能多场景递进规划优化[J]. 电力建设, 2025, 46(1): 134-146.
ZHANG Ting, MA Yuze, WU Yunna. Multi-scenario progressive planning optimization of shared energy storage under dual-carbon goals[J]. Electric Power Construction, 2025, 46(1): 134-146.
[4]
胥栋, 李逸超, 李赟, 等. 基于深度强化学习的多能流楼宇低碳调度方法[J]. 浙江电力, 2024, 43(2): 126-136.
XU Dong, LI Yichao, LI Yun, et al. A low-carbon scheduling method for multi-energy flow buildings based on deep reinforcement learning[J]. Zhejiang Electric Power, 2024, 43(2): 126-136.
[5]
赵斌, 梁告, 姜孟浩, 等. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433.
Abstract
目的 电池储能是保证光伏发电系统可靠性、提高光伏发电利用率的有效手段之一,但在光储电站中存在功率波动平抑难、储能容量配置不合理等问题,为解决这些问题,开展了相关研究。 方法 针对能量型电池储能,分析了调度模式和自主模式特性,提出了一种基于储能运行在调度模式的光储系统限功率平抑策略,以实现功率平抑和减少储能充放电频繁切换。建立了以最小光储系统弃电损失为优化目标,以功率波动越限概率等作为约束条件的优化模型,并利用算法对储能配置进行求解和优化。以西藏朗明桑珠孜50 MW光储电站为例,验证了所提平抑策略的有效性。 结果 所提平抑策略在不增加储能充放电切换次数的前提下,将光储系统并网功率波动越限概率由25.64%降至6.41%,且并网功率波动越限概率为5%时,该50 MW并网光伏电站储能系统最优配置为14.5 MW/94 MW⋅h。 结论 所提抑策略及储能优化配置方法可为并网光储电站优化设计和运行提供技术参考。
ZHAO Bin, LIANG Gao, JIANG Menghao, et al. Grid-connected power fluctuation suppression and energy storage optimization configuration of photovoltaic-energy storage system[J]. Power Generation Technology, 2024, 45(3): 423-433.
[6]
王永利, 向皓, 郭璐, 等. 面向多能互补的分布式光伏与电氢混合储能规划优化研究[J]. 电网技术, 2024, 48(2): 564-576.
WANG Yongli, XIANG Hao, GUO Lu, et al. Research on planning optimization of distributed photovoltaic and electro-hydrogen hybrid energy storage for multi-energy complementarity[J]. Power System Technology, 2024, 48(2): 564-576.
[7]
徐奇锋, 王激华, 乔松博, 等. 考虑源-荷匹配的区域电网风光储容量规划-运行联合优化方法[J]. 电力建设, 2024, 45(8): 85-96.
Abstract
合理规划新能源装机容量是实现新能源高效消纳的基础。新能源的波动性给系统的安全稳定运行带来了极大挑战,为平抑风光出力的波动性,需要增设储能设备以提高系统稳定性。当前考虑源-荷匹配的新能源装机规划模型大多固定储能容量,且针对如何缩小源-荷匹配偏差问题鲜有涉及,难以解决源荷最优匹配下的最优经济效益问题。文章提出了一种考虑源-荷匹配的区域电网风光储容量规划-运行联合优化方法。首先,基于k-means聚类获取全年8 760 h中最具代表性的24 h×7的典型日数据作为规划基础数据;其次,建立包含风、光、储的考虑源-荷匹配的区域电网风光储容量规划-运行联合优化模型,以日平均规划成本最小为目标,在已有约束基础上引入源-荷匹配约束实现电源侧总出力与负荷侧变化趋势一致以减小调峰压力,并设计了匹配偏差惩罚机制以缩小源荷匹配偏差;最后,以江苏省某区域电网为对象进行算例分析,结果表明所提模型能够减少系统运行成本,缩小源-荷匹配偏差,降低调峰压力,验证了所提模型的有效性与可行性。
XU Qifeng, WANG Jihua, QIAO Songbo, et al. Planning and operation joint optimization method for wind, solar, and energy storage capacity in regional power grids considering source load matching[J]. Electric Power Construction, 2024, 45(8): 85-96.
Reasonable planning of new-energy installed capacity is the foundation for achieving efficient consumption of new energy. The volatility of new energy sources poses significant challenges for the safe and stable operation of the system. To mitigate the volatility of wind and solar outputs, energy storage equipment must be added to improve system stability. Current research models for new energy installation planning mostly set a fixed energy storage capacity, which makes it difficult to achieve optimal economic benefits. This study proposes a joint planning and operation optimization method for wind, solar, and storage capacities in regional power grids, considering source load matching. First, based on k-means clustering, the most representative 24×7 h typical daily data out of 8760 h in the whole year is obtained as the basic data;second, a joint optimization model for regional grid wind, solar, and energy storage capacity planning and operation is developed considering source load matching. In the model, the optimization goal is to minimize the daily average planning cost, and a source load matching constraint is added to achieve consistency in changing trends between the total generation output and the load demand to reduce the peak shaving pressure. A matching deviation penalty mechanism is designed to reduce the source load matching deviation. Finally, a case study is conducted based on a regional power grid in Jiangsu Province, and the results show that the model can reduce system operating costs, source load matching deviation, and peak pressure. This verifies the effectiveness and feasibility of the proposed model.
[8]
俞晓荣, 徐青山, 杜璞良, 等. 融合注意力机制与SAC算法的虚拟电厂多能流低碳调度[J]. 电力工程技术, 2024, 43(5): 233-246.
YU Xiaorong, XU Qingshan, DU Puliang, et al. Optimizing multi-energy fow scheduling of hydrogen-inclusive virtual power plants based on deep reinforcement learning under dual-carbon targets[J]. Electric Power Engineering Technology, 2024, 43(5): 233-246.
[9]
张树森, 段慧芹, 周傲, 等. 基于能流耦合机理的热电耦合综合能源系统潮流分析及对比[J]. 电网与清洁能源, 2024, 40(4): 65-73, 83.
ZHANG Shusen, DUAN Huiqin, ZHOU Ao, et al. Power flow analysis and comparison of thermoelectric coupling integrated energy system based on energy flow coupling mechanism[J]. Power System and Clean Energy, 2024, 40(4): 65-73, 83.
[10]
李明佳, 郭嘉琪, 马腾, 等. “源-网-荷-储” 式异质能流复合供能系统的研究现状及发展趋势[J]. 科学通报, 2023, 68(15): 1941-1958.
LI Mingjia, GUO Jiaqi, MA Teng, et al. Research status and development trend of generation-grid-loadstorage type integrated systems with heterogeneous energy flows[J]. Chinese Science Bulletin, 2023, 68(15): 1941-1958.
[11]
阮涛, 朱三立, 葛辉, 等. 考虑供需平衡度的能源枢纽定址配容交替优化方法[J]. 浙江电力, 2024, 43(9): 29-38.
RUAN Tao, ZHU Sanli, GE Hui, et al. An alternate optimization method for energy hub siting and sizing considering supply-demand balance[J]. Zhejiang Electric Power, 2024, 43(9): 29-38.
[12]
黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45(6): 2256-2272.
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2272.
[13]
潘超, 郭晨雨, 刘继哲, 等. 电-氢混合储能参与的多能系统低碳优化[J]. 电网与清洁能源, 2024, 40(2): 21-29.
PAN Chao, GUO Chenyu, LIU Jizhe, et al. A study on low-carbon optimization of the multi-energy system with electricity-hydrogen hybrid energy storage participation[J]. Power System and Clean Energy, 2024, 40(2): 21-29.
[14]
国家发展改革委, 国家能源局. 关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL]. [2022-01-30]. https://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm.
[15]
夏佳伟, 张一帆, 雷浩, 等. 考虑高效氢能利用和碳捕集的综合能源系统低碳优化调度[J]. 电力建设, 2024, 45(12): 100-111.
XIA Jiawei, ZHANG Yifan, LEI Hao, et al. Low-carbon economic dispatch of integrated energy system considering efficient hydrogen utilization and carbon capture equipment[J]. Electric Power Construction, 2024, 45(12): 100-111.
[16]
韩子娇, 那广宇, 董鹤楠, 等. 考虑灵活性供需平衡的含电转氢综合能源系统鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 161-169.
HAN Zijiao, NA Guangyu, DONG Henan, et al. Robust optimal operation of integrated energy system with P2H considering flexibility balance[J]. Power System Protection and Control, 2023, 51(6): 161-169.
[17]
UTOMO O, ABEYSEKERA M, UGALDE-LOO C E. Optimal operation of a hydrogen storage and fuel cell coupled integrated energy system[J]. Sustainability, 2021, 13(6): 3525.
[18]
董晓晶, 刘洪, 宫建锋, 等. 考虑多类型综合需求响应的电热耦合能源系统可靠性评估[J]. 电力建设, 2018, 39(11): 10-19.
Abstract
 随着城市电网中电热等多类型负荷的持续增长,为保证高负载率情况下的可靠性水平,需要通过电热等能源的综合需求响应提升系统的供能可靠性。为此,文章提出了一种考虑多类型综合需求响应的电热耦合能源系统可靠性评估方法。首先,分析了电热耦合能源系统的基本结构以及所研究的边界条件。其次,介绍了电热耦合系统中不同元件的出力模型与状态模型。然后,建立了基于电价与基于激励2种模式下的电热综合需求响应模型,并以此为基础提出了故障影响分析的方法以及可靠性评估的流程。最后,通过实际算例比较了不同综合需求响应方案下的可靠性指标与经济性水平,以指导电网公司进行最优综合需求响应方案的选择,从而证明了所提方法的有效性和实用性。
DONG Xiaojing, LIU Hong, GONG Jianfeng, et al. Reliability assessment of coupled electricity-heat energy system considering multi-type integrated demand response[J]. Electric Power Construction, 2018, 39(11): 10-19.
[19]
李天格, 胡志坚, 陈志, 等. 计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J]. 电力自动化设备, 2023, 43(1): 16-24.
LI Tiange, HU Zhijian, CHEN Zhi, et al. Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J]. Electric Power Automation Equipment, 2023, 43(1): 16-24.
[20]
钟雅珊, 付聪, 钱峰, 等. 考虑广义储能和条件风险价值的综合能源系统经济调度[J]. 电力系统保护与控制, 2022, 50(9): 54-63.
ZHONG Yashan, FU Cong, QIAN Feng, et al. Economic dispatch model of an integrated energy system considering generalized energy storage and conditional value at risk[J]. Power System Protection and Control, 2022, 50(9): 54-63.
[21]
宋梦, 林固静, 高赐威, 等. 考虑多重不确定性的广义共享储能优化配置方法[J]. 电工技术学报, 2025, 40(5): 1521-1539.
SONG Meng, LIN Gujing, GAO Ciwei, et al. A generalized shared energy storage optimization configuration method considering multiple uncertainties[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1521-1539.
[22]
于建平, 余一平, 许剑冰, 等. 基于自适应准谐振控制的储能抑制广义强迫振荡传播方法[J]. 电力系统保护与控制, 2024, 52(5): 128-138.
YU Jianping, YU Yiping, XU Jianbing, et al. Energy storage suppression method of generalized forced oscillation propagation based on adaptive quasi-resonant control[J]. Power System Protection and Control, 2024, 52(5): 128-138.
[23]
肖碧涛, 刘元, 叶雨润, 等. 考虑广义储能参与灵活响应的光储氢集站实时能量管理策略[J]. 电力自动化设备, 2024, 44(10): 53-61.
XIAO Bitao, LIU Yuan, YE Yurun, et al. Real-time energy management strategy of photovoltaic-energy storage-hydrogen production integrated system considering generalized energy storage participating in flexible response[J]. Electric Power Automation Equipment, 2024, 44(10): 53-61.
[24]
李宏仲, 房宇娇, 肖宝辉. 考虑广义储能的区域综合能源系统优化运行研究[J]. 电网技术, 2019, 43(9): 3130-3138.
LI Hongzhong, FANG Yujiao, XIAO Baohui. Research on optimized operation of regional integrated energy system considering generalized energy storage[J]. Power System Technology, 2019, 43(9): 3130-3138.
[25]
刘效辰, 刘晓华, 张涛, 等. 建筑区域广义储能资源的刻画与设计方法[J]. 中国电机工程学报, 2024, 44(6): 2171-2185.
LIU Xiaochen, LIU Xiaohua, ZHANG Tao, et al. Characterization and design method of generalized energy storage resources in or around buildings[J]. Proceedings of the CSEE, 2024, 44(6): 2171-2185.
[26]
张晓, 陈胜, 卫志农, 等. 计及广义储能的园区综合能源系统低碳规划[J]. 电力自动化设备, 2024, 44(3): 40-48.
ZHANG Xiao, CHEN Sheng, WEI Zhinong, et al. Low-carbon planning of park-level integrated energy system considering generalized energy storage[J]. Electric Power Automation Equipment, 2024, 44(3): 40-48.
[27]
高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42(17): 6155-6170.
GAO Ciwei, WANG Wei, CHEN Tao. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170.
[28]
骆钊, 王菁慧, 王华, 等. 考虑碳捕集和电转气的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43(12): 127-134.
LUO Zhao, WANG Jinghui, WANG Hua, et al. Optimal scheduling of integrated energy system considering carbon capture and power-to-gas[J]. Electric Power Automation Equipment, 2023, 43(12): 127-134.
[29]
梁俊鹏, 张高航, 李凤婷, 等. 计及氢储能-制氨-碳捕集的综合能源系统低碳优化调度[J]. 电力自动化设备, 2024, 44(10): 16-23.
LIANG Junpeng, ZHANG Gaohang, LI Fengting, et al. Low-carbon optimal scheduling of integrated energy system considering hydrogen energy storage, ammonia production and carbon capture[J]. Electric Power Automation Equipment, 2024, 44(10): 16-23.
[30]
徐加银, 汪涛, 王加庆, 等. 考虑微电网灵活性资源属性的配电网规划方法[J]. 电力建设, 2022, 43(6): 84-92.
Abstract
针对含微电网的配电网,提出了一种考虑微电网灵活性资源属性的配电网规划方法,该方法从变电站规划和网架规划两阶段考虑了微电网的灵活性资源属性。首先,建立了微电网内各灵活性资源的数学模型,进而组成微网的对外等效模型;然后,通过更新定容公式以及在网架规划中添加约束条件来考虑灵活性资源;最后,建立以配电网投资和运行成本最小为目标函数的规划模型,并基于改进的遗传算法进行求解。通过含3个微电网的待规划区域进行算例设计和仿真,结果表明文章提出的规划方法可以在成本少量增加的情况下提升系统传输灵活性,使得未来配电网运行过程中出现分布式电源波动或负荷预测不准确时,线路留有足够的灵活性供主网或微电网进行功率传输,证明了所提出模型的合理性和有效性。
XU Jiayin, WANG Tao, WANG Jiaqing, et al. Distribution network planning method considering flexibility resource attribute of microgrids[J]. Electric Power Construction, 2022, 43(6): 84-92.

Aiming at the distribution network with microgrid, a distribution network planning method considering the flexibility resource attribute of microgrids is proposed. The flexibility resource attribute of microgrids is considered from substation planning and grid planning. Firstly, the mathematical models of flexible resources in microgrids are established and then the external equivalent model of microgrids is formed. Then, the flexibility resources are considered by updating the constant volume formula and adding constraints in network planning. Finally, a distribution network programming model with minimum investment and operating cost as the objective function is established and it is solved by improved genetic algorithm. Case study is designed according to the area to be planned with three microgrids. The results show that the planning method proposed in the paper can improve the system transmission flexibility with a small increase in cost, so when the distributed power supply fluctuates or the load forecast is inaccurate during the operation of the distribution network in the future, the line will have enough flexibility for the main network or the microgrid to transmit power, which proves the rationality and effectiveness of the proposed model.

[31]
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
[32]
CHENG Y H, ZHANG N, WANG Y, et al. Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3562-3574.
[33]
孙国强, 王文学, 吴奕, 等. 辐射型电-热互联综合能源系统快速潮流计算方法[J]. 中国电机工程学报, 2020, 40(13): 4131-4142.
SUN Guoqiang, WANG Wenxue, WU Yi, et al. Fast power flow calculation method for radiant electric-thermal interconnected integrated energy system[J]. Proceedings of the CSEE, 2020, 40(13): 4131-4142.
[34]
薛屹洵, 杜源, 王科, 等. 计及热网拓扑重构的电-热分布式机组组合研究[J]. 中国电机工程学报, 2025, 45(10): 3698-3709.
XUE Yixun, DU Yuan, WANG Ke, et al. Distributed unit commitment for integrated electric and heating system considering reconfiguration of district heating network[J]. Proceedings of the CSEE, 2025, 45(10): 3698-3709.
[35]
郭静蓉, 向月, 吴佳婕, 等. 考虑CCUS电转气技术及碳市场风险的电-气综合能源系统低碳调度[J]. 中国电机工程学报, 2023, 43(4): 1290-1303.
GUO Jingrong, XIANG Yue, WU Jiajie, et al. Low-carbon optimal scheduling of integrated electricity-gas energy systems considering CCUS-P2G technology and risk of carbon market[J]. Proceedings of the CSEE, 2023, 43(4): 1290-1303.
[36]
CHENG Y H, ZHANG N, ZHANG B S, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1307-1318.
[37]
刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543.
DIAO Hanbin, LI Peiqiang, WANG Jifei, et al. Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543.
[38]
李轶, 朱亚萍, 王昕. 考虑电动汽车出行规律的虚拟电厂鲁棒优化调度[J]. 电气工程学报, 2024, 19(2): 307-315.
LI Yi, ZHU Yaping, WANG Xin. Robust optimal scheduling of virtual power plants considering travel rules of electric vehicles[J]. Journal of Electrical Engineering, 2024, 19(2): 307-315.

Funding

National Natural Science Foundation of China(52477178)
PDF(3480 KB)

Accesses

Citation

Detail

Sections
Recommended

/