PDF(1381 KB)
Power Prediction of Photovoltaic Clusters Based on Spatio-Temporal Feature Extraction and Cross-Modal Fusion
WANG Jian, LIU Huiyuan, ZHANG Zhanxi, SHEN Fu, WANG Kaizheng, CAI Zilong
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 121-129.
PDF(1381 KB)
PDF(1381 KB)
Power Prediction of Photovoltaic Clusters Based on Spatio-Temporal Feature Extraction and Cross-Modal Fusion
[Objective] Photovoltaic (PV) power forecasting is a critical component of grid-connected PV dispatch and optimization. However, existing forecasting methods inadequately capture the spatial correlations between power plants, particularly in scenarios with multiple plants exhibiting strong correlations, in which the prediction accuracy remains suboptimal. [Methods] To this end, this study proposes a PV power prediction model, the spatiotemporal multimodal fusion network (ST-MoFNet), that combines spatiotemporal feature extraction and a cross-modal fusion attention module. The model extracts spatiotemporal features from the spatial and temporal dimensions using a graph convolutional network (GCN) and a temporal convolutional network (TCN-Informer), respectively, and efficiently fuses multimodal information to capture the complex spatiotemporal dependencies among power plants using a cross-modal fusion attention module. [Results] The experimental results showed that the ST-MoFNet exhibited superior prediction performance compared with the other models, achieving the best results in 1-, 3-, and 5-step predictions. The average R squared (R2) value was 0.896, with a substantial improvement in accuracy of 6-16%. [Conclusions] The combined ST-MoFNet model effectively solved the shortcomings of traditional prediction methods in cluster prediction through its advantages in spatiotemporal feature extraction and information fusion and significantly improved the accuracy and reliability of PV power prediction.
photovoltaic power generation / graph convolution / cluster prediction / Informer
| [1] |
国家发展改革委,国家能源局. 国家发展改革委国家能源局关于印发《“十四五”现代能源体系规划》的通知[EB/OL].(2022-01-29)[2024-02-27]. https://www.gov.cn/zhengce/zhengceku/2022-03/23/content_5680759.htm.
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
准确的太阳能发电功率短期预测是保证电力调度和大规模光伏并网的关键。该文对近年来光伏发电功率短期预测研究进展进行综述,并对影响光伏发电功率的各种气象因素进行相关性分析。针对用于光伏发电短期功率预测的人工神经网络模型和深度学习模型进行总结和评述。太阳辐照度是影响预测模型精度的主要气象参数。在光伏发电功率短期预测中,神经网络及其组合模型均表现出较好的预测精度,但组合模型整体上优于单一预测模型。
Accurate short-term forecasting of photovoltaic generation is crucial to ensure power dispatching and large-scale photovoltaic grid connection. This review paper presents an extensive review on recent progress in the short-term forecasting of solar power generation. The correlation analysis of various meteorological factors affecting on solar power generation is implemented. The artificial neural network models and deep learning models for solar power forecasting are summarized and reviewed. The solar irradiance is the main meteorological parameter affecting the accuracy of forecasting models. In the short-term forecasting of solar power generation, both neural network models and hybrid models demonstrate a satisfactory prediction accuracy, whereas the hybrid models perform better than the single forecasting models in the prediction accuracy.
|
| [6] |
刘甚臻, 马超. 基于小波变换和混合深度学习的短期光伏功率预测[J]. 可再生能源, 2023, 41(6): 744-749.
|
| [7] |
赵宏程, 张志鹏. 大规模间歇性新能源接入对西藏电网的影响研究[J]. 电力设备管理, 2020(12): 124-125, 128.
|
| [8] |
田壁源, 李永新, 文玉玲, 等. 光伏功率预测技术与方法[J]. 电工技术, 2019(15): 25-27.
|
| [9] |
|
| [10] |
张晓珂, 张辉, 戴小然, 等. 基于层次聚类和BILSTM的光伏短期功率预测模型[J]. 智慧电力, 2024, 52(9): 41-48.
|
| [11] |
江卓翰, 周胜瑜, 何禹清, 等. 基于K-I-ELM多模型集成的分布式光伏出力短期预测方法[J]. 电力科学与技术学报, 2024, 39(4): 146-152.
|
| [12] |
邹港, 赵斌, 罗强, 等. 基于PCA-VMD-MVO-SVM的短期光伏输出功率预测方法[J]. 电力科学与技术学报, 2024, 39(5): 163-171.
|
| [13] |
李庆生, 张裕, 龙家焕, 等. 基于IMFO-LSTM模型的光伏功率预测研究[J]. 电力科学与技术学报, 2024, 39(3): 199-206.
|
| [14] |
周强, 张晓忠, 陈久益, 等. 基于遗传算法小波神经网络的光伏电站发电量预测方法[J]. 智慧电力, 2024, 52(4): 78-84.
|
| [15] |
邱书琦, 蹇照民, 方立雄, 等. 基于变分模态分解和集成学习的光伏发电预测[J]. 智慧电力, 2024, 52(3): 32-38.
|
| [16] |
叶洪吉, 卫东, 郭倩, 等. 基于设计信息的分布式光伏电站预测发电量计算方法[J]. 太阳能学报, 2021, 42(4): 253-259.
|
| [17] |
李余琪, 张刚林, 甘敏. 基于函数系数自回归模型的风速时间序列预测[J]. 数学的实践与认识, 2017, 47(8): 161-166.
|
| [18] |
陈文进, 陈菁伟, 钱建国, 等. 气象特征频繁变化区域的光伏功率预测方法[J]. 浙江电力, 2023, 42(3): 37-46.
|
| [19] |
|
| [20] |
|
| [21] |
时培明, 郭轩宇, 杜清灿, 等. 基于TCN-BiLSTM-Attention-ESN的光伏功率预测[J]. 太阳能学报, 2024, 45(9): 304-316.
|
| [22] |
王舒雨, 李豪, 马刚, 等. 基于TCN和DLinear的光伏发电功率多步预测模型[J]. 电力建设, 2025, 46(4): 173-184.
|
| [23] |
张家安, 王琨玥, 陈建, 等. 基于空间相关性的分布式光伏出力预测[J]. 电力建设, 2020, 41(3): 47-53.
随着分布式光伏在配电网的渗透率不断上升,其出力波动将成为调度运行中不可忽略的一项不确定因素。基于同一地区光伏出力变化的相关性,提出一种基于空间相关性的分布式光伏出力预测方法。先对同一地区集中式、分布式光伏出力历史数据做无遮归一化,以无遮系数表征光伏出力不确定性;再由K-means聚类方法对天气情况分类,建立基于Copula函数的各类天气工况下光伏出力的相关性模型;最后根据集中式光伏出力信息实现分布式光伏出力预测。以我国北部某城市光伏电站数据为算例,验证了该方法的有效性。
With the increasing proportion of distributed photovoltaic (DPV) power in distribution network, the fluctuation of its power output will become a non-negligible uncertain factor in power grid dispatch and operation. On the basis of the correlation of photovoltaic power generation in one region, a prediction method for distributed photovoltaic output is proposed on the basis of spatial correlation. Firstly, the historical data of centralized and distributed photovoltaic output in the same region are normalized to uncovered coefficient which represents the randomness of photovoltaic output. Then, the weather conditions are classified by K-means clustering. According to Copula theory, the correlation model of photovoltaic output under various weather conditions is established. Finally, the distributed photovoltaic output is predicted according to the information of centralized photovoltaic output. The validity of the proposed method is verified by using an example of a photovoltaic power station in a city of northern China.
|
| [24] |
赵如意, 王晓辉, 郑碧煌, 等. 基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测[J]. 电网技术. 2025, 49(1): 209-222.
|
| [25] |
文贤馗, 何明君, 张俊玮, 等. 基于K均值聚类的光伏集群发电功率超短期预测研究[J]. 电力系统保护与控制, 2025, 53(12): 165-172.
|
| [26] |
朱涛, 李俊伟, 朱元富, 等. 基于LSTM和误差修正的光伏发电短期功率预测[J]. 哈尔滨理工大学学报, 2025, 30(2): 122-130.
|
| [27] |
王玲芝, 李晨阳, 刘婧, 等. 基于GRO-SSA-LSTM的短期光伏发电功率预测[J]. 太阳能学报, 2025, 46(2): 401-409.
|
| [28] |
陈船宇, 熊国江, 方厚康, 等. 基于MODWT-CEEMDAN-LSTM的短期光伏功率区间预测模型[J]. 太阳能学报, 2025, 46(2): 416-424.
|
| [29] |
|
| [30] |
赵雪锋, 张宇宁, 詹巍, 等. 基于TCN-Informer的多源融合虚拟最优气象源光伏功率预测[J]. 水力发电, 2025, 51(3): 97-104, 124.
|
| [31] |
|
| [32] |
冯秀坤, 刘国通, 李占峰, 等. 基于CNN-BiLSTM-Attention的光伏功率预测模型[J]. 电工技术, 2025(4): 50-52, 57.
|
| [33] |
|
| [34] |
李豪, 马刚, 李天宇, 等. 基于时空相关性的短期光伏出力预测混合模型[J]. 电力系统及其自动化学报, 2024, 36(5): 121-129.
|
| [35] |
张亮, 周立洋, 徐晓春, 等. 一种基于GCN的光伏短期出力预测方法研究[J]. 太阳能学报, 2024, 45(8): 289-294.
|
| [36] |
刘运超, 杨宁, 崔承刚, 等. 基于时空信息的区域内光伏电站功率预测[J]. 科学技术与工程, 2023, 23(34): 14596-14602.
|
| [37] |
|
| [38] |
|
/
| 〈 |
|
〉 |