Active Frequency Support Control Strategy for Wind Farm Considering the Energy Discrepancy of Wind Turbines

LI Fengneng, YANG Ping, WEI Zhichu, CHEN Wenhao, ZHOU Qianyufan, WAN Siyang

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 145-157.

PDF(1528 KB)
PDF(1528 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (11) : 145-157. DOI: 10.12204/j.issn.1000-7229.2025.11.013
Renewable Energy and Energy Storage

Active Frequency Support Control Strategy for Wind Farm Considering the Energy Discrepancy of Wind Turbines

Author information +
History +

Abstract

[Objective] Wind turbine generators generally operate in maximum power point tracking (MPPT) mode and do not provide inertial response and frequency support to the power grid. To fully utilize the frequency regulation capabilities within a wind farm, this study proposes an active frequency support control strategy for wind farms that accounts for the energy discrepancy among wind turbines.[Methods] The relationship between wind energy loss and rotor speed during the frequency regulation process was derived, and the available frequency regulation energy of wind turbines was evaluated to establish a frequency response model for a wind farm. Model predictive control (MPC) was subsequently employed to optimize the active power distribution among wind turbine generators. This strategy aims to satisfy the frequency regulation demands of the wind farm, fully utilize the frequency regulation energy of the turbines, and minimize wind energy loss during the process. Following the frequency support phase, a rotor speed recovery strategy is implemented to restore the generator speed.[Results] Simulation results demonstrate that the proposed control strategy effectively utilizes the frequency regulation energy of wind turbines within the farm to actively support system frequency, while also reducing energy loss during the frequency regulation process and mitigating secondary frequency drops during the rotor speed recovery phase.[Conclusions] The proposed strategy effectively enhances the frequency support capability of wind farms by optimizing the allocation of frequency regulation energy, reducing wind energy loss, improving the efficiency and economic performance of wind farm frequency regulation, and providing technical support for the large-scale integration of wind power.

Key words

wind farm / frequency regulation energy / wind energy loss / model predictive control(MPC) / frequency active support

Cite this article

Download Citations
LI Fengneng , YANG Ping , WEI Zhichu , et al . Active Frequency Support Control Strategy for Wind Farm Considering the Energy Discrepancy of Wind Turbines[J]. Electric Power Construction. 2025, 46(11): 145-157 https://doi.org/10.12204/j.issn.1000-7229.2025.11.013

References

[1]
国家能源局发布2023年全国电力工业统计数据[EB/OL].(2024-01-28) [2024-06-15]. https://www.gov.cn/lianbo/bumen/202401/content_6928723.htm.
[2]
陶思钰, 江福庆. 集群化发展模式下风电场预测、规划及控制关键技术综述[J]. 电力工程技术, 2024, 43(1): 86-99.
TAO Siyu, JIANG Fuqing. Review of the key technologies of wind farm cluster prediction, planning and control[J]. Electric Power Engineering Technology, 2024, 43(1): 86-99.
[3]
高丙团, 胡正阳, 王伟胜, 等. 新能源场站快速有功控制及频率支撑技术综述[J]. 中国电机工程学报, 2024, 44(11): 4335-4353.
GAO Bingtuan, HU Zhengyang, WANG Weisheng, et al. Review on fast active power control and frequency support technologies of renewable energy stations[J]. Proceedings of the CSEE, 2024, 44(11): 4335-4353.
[4]
李国庆, 刘先超, 辛业春, 等. 含高比例新能源的电力系统频率稳定研究综述[J]. 高电压技术, 2024, 50(3): 1165-1181.
LI Guoqing, LIU Xianchao, XIN Yechun, et al. Research on frequency stability of power system with high penetration renewable energy: a review[J]. High Voltage Engineering, 2024, 50(3): 1165-1181.
[5]
LUO H C, HU Z C, ZHANG H C, et al. Coordinated active power control strategy for deloaded wind turbines to improve regulation performance in AGC[J]. IEEE Transactions on Power Systems, 2019, 34(1): 98-108.
[6]
DONG Z, LI Z G, DONG Y, et al. Fully-distributed deloading operation of DFIG-based wind farm for load sharing[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1): 430-440.
[7]
孙铭, 徐飞, 陈磊, 等. 利用转子动能的风机辅助频率控制最优策略[J]. 中国电机工程学报, 2021, 41(2): 506-514.
SUN Ming, XU Fei, CHEN Lei, et al. Optimal auxiliary frequency control strategy of wind turbine generator utilizing rotor kinetic energy[J]. Proceedings of the CSEE, 2021, 41(2): 506-514.
[8]
LEE J, MULJADI E, SRENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 279-288.
[9]
俞靖一, 葛俊, 杨铎烔, 等. 基于转子动能的风电场自适应频率主动支撑控制策略[J]. 电力工程技术, 2024, 43(5): 131-139.
YU Jingyi, GE Jun, YANG Duotong, et al. Adaptive frequency support control strategy for wind farms based on rotor kinetic energy[J]. Electric Power Engineering Technology, 2024, 43(5): 131-139.
[10]
谢善益, 杨强, 谢恩彦, 等. 考虑受端电网运行安全的台风条件下海上风电场协调运行策略[J]. 浙江电力, 2023, 42(10): 17-24.
XIE Shanyi, YANG Qiang, XIE Enyan, et al. The coordinated operation strategy for offshore wind farms with energy storage under typhoon conditions considering the operation safety demand of receiver grid[J]. Zhejiang Electric Power, 2023, 42(10): 17-24.
[11]
刘洪波, 彭晓宇, 张崇, 等. 风电参与电力系统调频控制策略综述[J]. 电力自动化设备, 2021, 41(11): 81-92.
LIU Hongbo, PENG Xiaoyu, ZHANG Chong, et al. Overview of wind power participating in frequency regulation control strategy for power system[J]. Electric Power Automation Equipment, 2021, 41(11): 81-92.
[12]
李可心, 安军, 石岩, 等. 基于可用调频能量的风电机组综合虚拟惯性控制参数整定[J]. 电工技术学报, 2025, 40(5): 1382-1394.
LI Kexin, AN Jun, SHI Yan, et al. An integrated virtual inertia control parameter setting method for wind turbine based on available frequency regulation energy[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1382-1394.
[13]
李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42(2): 84-93.
LI Shichun, SONG Qiushuang, XUE Zhenyao, et al. Inertia estimation of new energy power system with virtual inertia response of wind power[J]. Electric Power Engineering Technology, 2023, 42(2): 84-93.
[14]
李阳, 李群, 陈载宇, 等. 面向电网最大频率偏差的风电机组短时频率支撑最优策略与机理[J]. 中国电机工程学报, 2024, 44(3): 1020-1035.
LI Yang, LI Qun, CHEN Zaiyu, et al. Maximum-frequency-deviation-oriented optimal short-term frequency support strategy of wind turbines and the mechanism[J]. Proceedings of the CSEE, 2024, 44(3): 1020-1035.
[15]
张鹏, 杨苹, 唐玉烽, 等. 风电机组自适应步进惯量控制策略[J]. 电网技术, 2024, 48(8): 3401-3408.
ZHANG Peng, YANG Ping, TANG Yufeng, et al. Adaptive stepwise inertial control strategy for wind turbines[J]. Power System Technology, 2024, 48(8): 3401-3408.
[16]
LU Z X, YE Y D, QIAO Y. An adaptive frequency regulation method with grid-friendly restoration for VSC-HVDC integrated offshore wind farms[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3582-3593.
[17]
王同森, 程雪坤. 计及转速限值的双馈风机变下垂系数控制策略[J]. 电力系统保护与控制, 2021, 49(9): 29-36.
WANG Tongsen, CHENG Xuekun. Variable droop coefficient control strategy of a DFIG considering rotor speed limit[J]. Power System Protection and Control, 2021, 49(9): 29-36.
[18]
ZHAO X X, XUE Y, ZHANG X P. Fast frequency support from wind turbine systems by arresting frequency nadir close to settling frequency[J]. IEEE Open Access Journal of Power and Energy, 2020, 7: 191-202.
[19]
柯贤波, 张文朝, 李朋旺, 等. 高风电渗透率系统的模糊自适应虚拟惯量控制[J]. 电网技术, 2020, 44(6): 2127-2136.
KE Xianbo, ZHANG Wenchao, LI Pengwang, et al. Fuzzy adaptive virtual inertia control for high wind power penetration system[J]. Power System Technology, 2020, 44(6): 2127-2136.
[20]
李少林, 王伟胜, 张兴, 等. 基于频率响应区间划分的风电机组虚拟惯量模糊自适应控制[J]. 电网技术, 2021, 45(5): 1658-1665.
LI Shaolin, WANG Weisheng, ZHANG Xing, et al. Fuzzy adaptive virtual inertia control strategy of wind turbines based on system frequency response interval division[J]. Power System Technology, 2021, 45(5): 1658-1665.
[21]
姚雅涵, 熊永新, 姚伟, 等. 面向电网频率快速支撑的风电场自适应分布式协调控制[J]. 中国电机工程学报, 2024, 44(2): 561-573.
YAO Yahan, XIONG Yongxin, YAO Wei, et al. Adaptive distributed cooperative control of wind farms for grid frequency fast support[J]. Proceedings of the CSEE, 2024, 44(2): 561-573.
[22]
XIONG Y X, YAO W, YAO Y H, et al. Distributed cooperative control of offshore wind farms integrated via MTDC system for fast frequency support[J]. IEEE Transactions on Industrial Electronics, 2023, 70(5): 4693-4704.
[23]
朱瑛, 石琦, 蔡寿国, 等. 基于二维动态减载和双层MPC的风储联合调频与功率优化分配[J]. 电力自动化设备, 2024, 44(8): 1-8.
ZHU Ying, SHI Qi, CAI Shouguo, et al. Wind-storage joint frequency modulation and power optimization allocation based on two-dimensional dynamic load reduction and two-layer MPC[J]. Electric Power Automation Equipment, 2024, 44(8): 1-8.
[24]
董天翔, 翟保豫, 李星, 等. 风储联合系统参与频率响应的优化控制策略[J]. 电网技术, 2022, 46(10): 3980-3989.
DONG Tianxiang, ZHAI Baoyu, LI Xing, et al. Optimal control strategy for combined wind-storage system to participate in frequency response[J]. Power System Technology, 2022, 46(10): 3980-3989.
[25]
贾文杰, 唐早, 曾平良, 等. 基于鲁棒模型预测控制的风火储联合系统调频优化策略[J]. 电测与仪表, 2023, 60(12): 27-35.
JIA Wenjie, TANG Zao, ZENG Pingliang, et al. Frequency regulation optimization strategy for wind-thermal-storage joint system based on robust model predictive control[J]. Electrical Measurement & Instrumentation, 2023, 60(12): 27-35.
[26]
张江丰, 葛一统, 谭珺敉, 等. 风电场联合分布式储能的协同调频策略[J]. 浙江电力, 2024, 43(9): 67-77.
ZHANG Jiangfeng, GE Yitong, TAN Junmi, et al. A coordinated frequency regulation strategy integrating wind farms with distributed energy storage[J]. Zhejiang Electric Power, 2024, 43(9): 67-77.
[27]
LIU F, LIU Z W, MEI S W, et al. ESO-based inertia emulation and rotor speed recovery control for DFIGs[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1209-1219.
[28]
PENG X T, YAO W, YAN C, et al. Two-stage variable proportion coefficient based frequency support of grid-connected DFIG-WTs[J]. IEEE Transactions on Power Systems, 2020, 35(2): 962-974.
[29]
张小莲, 孙啊传, 郝思鹏, 等. 风电场参与电网调频的多机协同控制策略[J]. 发电技术, 2024, 45(3): 448-457.
Abstract
目的 考虑风电场中不同风况下风电机组参与一次调频能力的差异,在下垂控制和惯量控制策略的基础上,对机组的调频能力评估方法进行优化。 方法 提出了一种改进的多机组调频参考功率协同控制策略。 结果 引入多机组协同控制方法能够有效改善机组之间调频参考功率的分配,从而有效调节各机组参与系统一次调频的程度。在惯量控制和下垂控制的基础上引入改进的协同控制策略,依据机组在实际风况下运行的状态,评估机组能够有效参与一次调频的参考功率。引入调频能力系数能够实现调频功率参考值在各机组之间按能分配。 结论 协同控制策略能够有效保护风电机组转速,同时能够有效改善电网频率响应。
ZHANG Xiaolian, SUN Achuan, HAO Sipeng, et al. Multi-machine cooperative control strategy of wind farm participating in power grid frequency modulation[J]. Power Generation Technology, 2024, 45(3): 448-457.

Objectives Considering the difference of primary frequency regulation ability of wind turbines under different wind conditions in wind farms, the evaluation method of frequency regulation capability of wind turbines was optimized on the basis of sag control and inertia control strategy. Methods An improved multi-unit frequency modulation reference power cooperative control strategy was proposed. Results The introduction of multi-unit cooperative control method can effectively improve the distribution of frequency modulation reference power among units, thus effectively adjust the degree of each unit participating in the primary frequency regulation of the system. An improved cooperative control strategy was introduced on the basis of inertia control and sag control. According to the operation state of the unit under the actual wind condition, the reference power of the unit which can effectively participate in the primary frequency modulation was evaluated. The introduction of frequency modulation capability coefficient can realize the energy distribution of the reference value of frequency modulation power among units. Conclusions The cooperative control strategy can effectively protect the speed of wind turbine and improve the frequency response of power grid.

[30]
胡正阳, 高丙团, 张磊, 等. 风电机组双向支撑能力分析与自适应惯量控制策略[J]. 电工技术学报, 2023, 38(19): 5224-5240.
HU Zhengyang, GAO Bingtuan, ZHANG Lei, et al. Bidirectional support capability analysis and adaptive inertial control strategy of wind turbine[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5224-5240.
[31]
王中权, 刘维斌, 孙枭雄, 等. 限功率工况风电场一次调频与疲劳抑制协调优化控制研究[J]. 电网与清洁能源, 2023, 39(2): 114-121.
WANG Zhongquan, LIU Weibin, SUN Xiaoxiong, et al. A study on coordinated optimal control for primary frequency regulation and fatigue suppression of wind farms under limited power condition[J]. Power System and Clean Energy, 2023, 39(2): 114-121.
[32]
鲍威宇. 风电惯量参与电网调频的控制研究[D]. 济南: 山东大学, 2021.
BAO Weiyu. Studies on participation of wind power inertia in power system frequency control[D]. Jinan: Shandong University, 2021.
[33]
徐曼, 丁然, 王德胜, 等. 考虑风电场并网性能差异的风电集群有功控制策略优化[J]. 浙江电力, 2024, 43(10): 85-92.
XU Man, DING Ran, WANG Desheng, et al. Optimization of an active control strategy for wind farm clusters considering their integration performance difference[J]. Zhejiang Electric Power, 2024, 43(10): 85-92.
[34]
阮益闽, 宗启航, 姚伟, 等. 计及典型控制的风电场调频能力量化评估及影响因素分析[J]. 电力系统自动化, 2024, 48(8): 42-52.
RUAN Yimin, ZONG Qihang, YAO Wei, et al. Quantitative assessment and analysis of influencing factors on frequency regulation capability of wind farms considering typical control[J]. Automation of Electric Power Systems, 2024, 48(8): 42-52.
[35]
颜湘武, 张伟超, 崔森, 等. 基于虚拟同步机的电压源逆变器频率响应时域特性和自适应参数设计[J]. 电工技术学报, 2021, 36(S1): 241-254.
YAN Xiangwu, ZHANG Weichao, CUI Sen, et al. Frequency response characteristics and adaptive parameter tuning of voltage-sourced converters under VSG control[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 241-254.
[36]
肖亮, 陈亦平, 伍阳阳, 等. 风电场快速调频技术的工程实践及关键参数取值[J]. 高电压技术, 2023, 49(6): 2536-2548.
XIAO Liang, CHEN Yiping, WU Yangyang, et al. Engineering practice and key parameter selection for fast frequency regulation technology of wind farms[J]. High Voltage Engineering, 2023, 49(6): 2536-2548.
[37]
JU L W, TAN Z F, YUAN J Y, et al. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind-photovoltaic-energy storage system considering the uncertainty and demand response[J]. Applied Energy, 2016, 171: 184-199.
[38]
TANG Y F, YANG P, YANG Y, et al. Fuzzy adaptive frequency support control strategy for wind turbines with improved rotor speed recovery[J]. IEEE Transactions on Sustainable Energy, 2024, 15(2): 1351-1364.
[39]
ANDERSON P M, FOUAD A A. 电力系统控制与稳定[M]. 王奔译. 北京: 电子工业出版社, 2012.

Funding

National Key Research and Development Program of China(2023YFB4203102)
The Marine Economic Development (Six Marine Industries) Special Fund Project of Guangdong Province(GDNRC[2023]27)
PDF(1528 KB)

Accesses

Citation

Detail

Sections
Recommended

/