Review of Research on Optimal Operation Technology of Integrated Energy System

LUO Zhao, LIU Dewen, SHEN Xin, WANG Gang, YU Pingqin, LI Zhao

Electric Power Construction ›› 2022, Vol. 43 ›› Issue (12) : 3-14.

PDF(13410 KB)
PDF(13410 KB)
Electric Power Construction ›› 2022, Vol. 43 ›› Issue (12) : 3-14. DOI: 10.12204/j.issn.1000-7229.2022.12.001
Review

Review of Research on Optimal Operation Technology of Integrated Energy System

Author information +
History +

Abstract

Integrated energy system (IES) is an important development direction of energy consumption in the future, and will play an increasingly important role in improving the energy efficiency of integrated energy use and the consumption of renewable energy. However, due to the high coupling of energy system in IES and the uncertainty in each link of source-network-load-storage, the dynamic process of IES is extremely complex, which brings great challenges to the optimal operation of IES. This paper aims at the optimal operation of IES. Firstly, the concept of IES is introduced and its main characteristics are analyzed. Secondly, the research status in home and abroad on the basic information perception of IES operation, the dynamic coordinated optimization scheduling system with hybrid time scales and its solution algorithm are summarized, and the shortcomings of the existing research are pointed out. Finally, the future research direction is prospected. The results of this paper will provide a reference for the follow-up research of integrated energy system.

Key words

integrated energy system (IES) / optimal operation / information perception / hybrid time scales

Cite this article

Download Citations
Zhao LUO , Dewen LIU , Xin SHEN , et al . Review of Research on Optimal Operation Technology of Integrated Energy System[J]. Electric Power Construction. 2022, 43(12): 3-14 https://doi.org/10.12204/j.issn.1000-7229.2022.12.001

References

[1]
齐宁, 程林, 田立亭, 等. 考虑柔性负荷接入的配电网规划研究综述与展望[J]. 电力系统自动化, 2020, 44(10): 193-207.
QI Ning, CHENG Lin, TIAN Liting, et al. Review and prospect of distribution network planning research considering access of flexible load[J]. Automation of Electric Power Systems, 2020, 44(10): 193-207.
[2]
张希良, 姜克隽, 赵英汝, 等. 促进能源气候协同治理机制与路径跨学科研究[J]. 全球能源互联网, 2021, 4(1): 1-4.
ZHANG Xiliang, JIANG Kejun, ZHAO Yingru, et al. Boost interdisciplinary research on development pathway and synergy governance of energy and climate[J]. Journal of Global Energy Interconnection, 2021, 4(1): 1-4.
[3]
陈胜, 卫志农, 顾伟, 等. 碳中和目标下的能源系统转型与变革:多能流协同技术[J]. 电力自动化设备, 2021, 41(9): 3-12.
CHEN Sheng, WEI Zhinong, GU Wei, et al. Carbon neutral oriented transition and revolution of energy systems: multi-energy flow coordination technology[J]. Electric Power Automation Equipment, 2021, 41(9): 3-12.
[4]
贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207.
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207.
[5]
高军伟, 陈泽雄, 郑欣, 等. 含光伏的冷热电联供园区微网多类型储能协调鲁棒优化配置[J]. 电力科学与技术学报, 2021, 36(6): 56-66.
GAO Junwei, CHEN Zexiong, ZHENG Xin, et al. Coordinated robust optimal allocation of multiple types energy storage devices in the CCHP campus microgrid with photovoltaic[J]. Journal of Electric Power Science and Technology, 2021, 36(6): 56-66.
[6]
孙浩, 傅金洲, 鄢小虎, 等. 区域综合能源仿真优化系统的研制[J]. 华电技术, 2021, 43(4): 8-13.
SUN Hao, FU Jinzhou, YAN Xiaohu, et al. Research and development of integrated community energy simulation-optimization system[J]. Huadian Technology, 2021, 43(4): 8-13.
[7]
孙宏斌, 潘昭光, 郭庆来. 多能流能量管理研究: 挑战与展望[J]. 电力系统自动化, 2016, 40(15): 1-8.
SUN Hongbin, PAN Zhaoguang, GUO Qinglai. Energy management for multi-energy flow: challenges and prospects[J]. Automation of Electric Power Systems, 2016, 40(15): 1-8.
[8]
张仙智. 习近平新时代能源国家战略研究[J]. 上海经济研究, 2019, 31(1): 15-19.
ZHANG Xianzhi. Xi jinping’s national energy strategy in the new era[J]. Shanghai Journal of Economics, 2019, 31(1): 15-19.
[9]
赵曰浩, 鞠平. 考虑供气约束与净负荷预测误差的电-气综合能源系统调度策略[J]. 电力自动化设备, 2022, 42(7): 221-228.
ZHAO Yuehao, JU Ping. Scheduling strategy of integrated electricity and gas system considering constraint of gas supplying and prediction error of net power load[J]. Electric Power Automation Equipment, 2022, 42(7): 221-228.
[10]
王丹, 黄德裕, 胡庆娥, 等. 基于电-热联合市场出清的综合需求响应建模及策略[J]. 电力系统自动化, 2020, 44(12): 13-21.
WANG Dan, HUANG Deyu, HU Qinge, et al. Modeling and strategy of integrated demand response based on joint electricity-heat clearing market[J]. Automation of Electric Power Systems, 2020, 44(12): 13-21.
[11]
GEIDL M, ANDERSSON G. Optimal power flow of multiple energy carriers[J]. IEEE Transactions on Power Systems, 2007, 22(1): 145-155.
[12]
卫志农, 梅建春, 孙国强, 等. 电-气互联综合能源系统多时段暂态能量流仿真[J]. 电力自动化设备, 2017, 37(6): 41-47.
WEI Zhinong, MEI Jianchun, SUN Guoqiang, et al. Multi-period transient energy-flow simulation of integrated power and gas energy system[J]. Electric Power Automation Equipment, 2017, 37(6): 41-47.
[13]
HUANG X Z, XU Z F, SUN Y, et al. Heat and power load dispatching considering energy storage of district heating system and electric boilers[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(5): 992-1003.
[14]
顾伟, 陆帅, 王珺, 等. 多区域综合能源系统热网建模及系统运行优化[J]. 中国电机工程学报, 2017, 37(5): 1305-1316.
GU Wei, LU Shuai, WANG Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization[J]. Proceedings of the CSEE, 2017, 37(5): 1305-1316.
[15]
管霖, 江泽涛, 唐宗顺. 基于集中质-量调节的综合能源系统供能管网管径优化设计方法及系统经济性分析[J]. 电力自动化设备, 2017, 37(6): 75-83.
GUAN Lin, JIANG Zetao, TANG Zongshun. Optimal diameter sizing based on centralized quality-quantity regulation and economic analysis of IES piping network[J]. Electric Power Automation Equipment, 2017, 37(6): 75-83.
[16]
王毅, 张宁, 康重庆. 能源互联网中能量枢纽的优化规划与运行研究综述及展望[J]. 中国电机工程学报, 2015, 35(22): 5669-5681.
WANG Yi, ZHANG Ning, KANG Chongqing. Review and prospect of optimal planning and operation of energy hub in energy Internet[J]. Proceedings of the CSEE, 2015, 35(22): 5669-5681.
[17]
吴鸣, 骆钊, 季宇, 等. 基于模型预测控制的冷热电联供型微网动态优化调度[J]. 中国电机工程学报, 2017, 37(24): 7174-7184.
WU Ming, LUO Zhao, JI Yu, et al. Optimal dynamic dispatch for combined cooling heating and power microgrid based on model predictive control[J]. Proceedings of the CSEE, 2017, 37(24): 7174-7184.
[18]
LUO Z, WANG Z H, WEI G, et al. A two-stage energy management strategy for CCHP microgrid considering house characteristics[C]// 2015 IEEE Power & Energy Society General Meeting. IEEE, 2015: 1-5.
[19]
TANG Y Y, GU W, WANG Z H, et al. Optimal configuration of distributed generators in an integrated energy system[J]. Journal of Renewable and Sustainable Energy, 2016, 8(4): 045301.
[20]
赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-589.
ZHAO Haipeng, MIAO Shihong, LI Chao, et al. Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2): 573-589.
[21]
MEHLERI E D, SARIMVEIS H, MARKATOS N C, et al. A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level[J]. Energy, 2012, 44(1): 96-104.
[22]
袁琦. 可再生能源发电中的储能技术[J]. 电力电容器与无功补偿, 2009, 30(5): 30-32, 42.
YUAN Qi. Energy storage technology in renewable energy generation[J]. Power Capacitor & Reactive Power Compensation, 2009, 30(5): 30-32, 42.
[23]
DUFO-LÓPEZ R, BERNAL-AGUSTÍN J L. Design and control strategies of PV-diesel systems using genetic algorithms[J]. Solar Energy, 2005, 79(1): 33-46.
[24]
LI Z G, WU W C, WANG J H, et al. Transmission-constrained unit commitment considering combined electricity and district heating networks[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 480-492.
[25]
徐业琰, 彭思成, 廖清芬, 等. 考虑用户互补聚合响应与热能传输延时的综合能源园区运营商两阶段短期优化调度[J]. 电力自动化设备, 2017, 37(6): 152-163.
XU Yeyan, PENG Sicheng, LIAO Qingfen, et al. Two-stage short-term optimal dispatch of MEP considering CAUR and HTTD[J]. Electric Power Automation Equipment, 2017, 37(6): 152-163.
[26]
GU W, WANG J, LU S, et al. Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings[J]. Applied Energy, 2017, 199: 234-246.
[27]
艾小猛, 方家琨, 徐沈智, 等. 一种考虑天然气系统动态过程的气电联合系统优化运行模型[J]. 电网技术, 2018, 42(2): 409-416.
AI Xiaomeng, FANG Jiakun, XU Shenzhi, et al. An optimal energy flow model in integrated gas-electric systems considering dynamics of natural gas system[J]. Power System Technology, 2018, 42(2): 409-416.
[28]
裴玮, 邓卫, 沈子奇, 等. 可再生能源与热电联供混合微网能量协调优化[J]. 电力系统自动化, 2014, 38(16): 9-15.
PEI Wei, DENG Wei, SHEN Ziqi, et al. Energy coordination and optimization of hybrid microgrid based on renewable energy and CHP supply[J]. Automation of Electric Power Systems, 2014, 38(16): 9-15.
[29]
SAHIN C, SHAHIDEHPOUR M, ERKMEN I. Generation risk assessment in volatile conditions with wind, hydro, and natural gas units[J]. Applied Energy, 2012, 96: 4-11.
[30]
CHEN Z X, ZHANG Y J, JI T Y, et al. Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(3): 495-508.
[31]
黄伟, 刘文彬. 基于多能互补的园区综合能源站-网协同优化规划[J]. 电力系统自动化, 2020, 44(23): 20-28.
HUANG Wei, LIU Wenbin. Multi-energy complementary based coordinated optimal planning of park integrated energy station-network[J]. Automation of Electric Power Systems, 2020, 44(23): 20-28.
[32]
KAMALINIA S, WU L, SHAHIDEHPOUR M. Stochastic midterm coordination of hydro and natural gas flexibilities for wind energy integration[J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1070-1079.
[33]
邓逸天, 王宇辉, 黄景光, 等. 考虑需求响应的含P2G电-气综合能源系统优化调度[J]. 智慧电力, 2020, 48(12):8-13.
DENG Yitian, WANG Yuhui, HUANG Jingguang, et al. Optimal dispatch of integrated electricity-gas system with power to gas considering demand response[J]. Smart Power, 2020, 48(12):8-13.
[34]
CONFICONI C, BARTOLINI A, TILLI A, et al. Integrated energy-aware management of supercomputer hybrid cooling systems[J]. IEEE Transactions on Industrial Informatics, 2016, 12(4): 1299-1311.
[35]
栗然, 孙帆, 刘会兰, 等. 考虑能量特性差异的用户级综合能源系统混合时间尺度经济调度[J]. 电网技术, 2020, 44(10): 3615-3624.
LI Ran, SUN Fan, LIU Huilan, et al. Economic dispatch with hybrid time-scale of user-level integrated energy system considering differences in energy characteristics[J]. Power System Technology, 2020, 44(10): 3615-3624.
[36]
顾伟, 陆帅, 姚帅, 等. 综合能源系统混合时间尺度运行优化[J]. 电力自动化设备, 2019, 39(8): 203-213.
GU Wei, LU Shuai, YAO Shuai, et al. Hybrid time-scale operation optimization of integrated energy system[J]. Electric Power Automation Equipment, 2019, 39(8): 203-213.
[37]
LI X Z, WANG W Q, WANG H Y. Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand[J]. Applied Energy, 2021, 285: 116458.
[38]
WANG S K, JIA R, SHI X Y, et al. Hybrid time-scale optimal scheduling considering multi-energy complementary characteristic[J]. IEEE Access, 2021, 9: 94087-94098.
[39]
崔杨, 郭福音, 仲悟之, 等. 多重不确定性环境下的综合能源系统区间多目标优化调度[J]. 电网技术, 2022, 46(8): 2964-2975.
CUI Yang, GUO Fuyin, ZHONG Wuzhi, et al. Interval multi-objective optimal dispatch of Integrated energy system under multiple uncertainty environment[J]. Power System Technology, 2022, 46(8): 2964-2974.
[40]
HUANG H X, LIANG R, LV C X, et al. Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system[J]. Applied Energy, 2021, 290: 116759.
[41]
YAN R J, WANG J J, WANG J H, et al. A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties[J]. Energy, 2022, 247: 123498.
[42]
NAJAFI A, POURAKBARI-KASMAEI M, JASINSKI M, et al. A max-min-max robust optimization model for multi-carrier energy systems integrated with power to gas storage system[J]. Journal of Energy Storage, 2022, 48: 103933.
[43]
ZHANG Y C, ZHENG F, SHU S W, et al. Distributionally robust optimization scheduling of electricity and natural gas integrated energy system considering confidence bands for probability density functions[J]. International Journal of Electrical Power & Energy Systems, 2020, 123: 106321.
[44]
易文飞, 卜强生, 路珊, 等. 计及气网管存效应的综合能源系统分布鲁棒优化调度[J]. 电力自动化设备, 2022, 42(6): 53-60.
YI Wenfei, BU Qiangsheng, LU Shan, et al. Distributionally robust optimal dispatching of integrated energy system considering line pack effect of gas network[J]. Electric Power Automation Equipment, 2022, 42(6): 53-60.
[45]
WANG C S, JIAO B Q, GUO L, et al. Robust scheduling of building energy system under uncertainty[J]. Applied Energy, 2016, 167: 366-376.
[46]
郭尊, 李庚银, 周明, 等. 考虑网络约束和源荷不确定性的区域综合能源系统两阶段鲁棒优化调度[J]. 电网技术, 2019, 43(9): 3090-3100.
GUO Zun, LI Gengyin, ZHOU Ming, et al. Two-stage robust optimal scheduling of regional integrated energy system considering network constraints and uncertainties in source and load[J]. Power System Technology, 2019, 43(9): 3090-3100.
[47]
WANG Y W, TANG L, YANG Y J, et al. A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties[J]. Energy, 2020, 198: 117273.
[48]
LI P, WANG Z X, WANG N, et al. Stochastic robust optimal operation of community integrated energy system based on integrated demand response[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106735.
[49]
LU S, GU W, ZHOU S Y, et al. Adaptive robust dispatch of integrated energy system considering uncertainties of electricity and outdoor temperature[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4691-4702.
[50]
张彦, 张涛, 孟繁霖, 等. 基于模型预测控制的能源互联网系统分布式优化调度研究[J]. 中国电机工程学报, 2017, 37(23): 6829-6845.
ZHANG Yan, ZHANG Tao, MENG Fanlin, et al. Model predictive control based distributed optimization and scheduling approach for the energy Internet[J]. Proceedings of the CSEE, 2017, 37(23): 6829-6845.
[51]
丛昊, 王旭, 蒋传文, 等. 基于联盟博弈的综合能源系统优化运行方法[J]. 电力系统自动化, 2018, 42(14): 14-22.
CONG Hao, WANG Xu, JIANG Chuanwen, et al. Coalition game based optimized operation method for integrated energy systems[J]. Automation of Electric Power Systems, 2018, 42(14): 14-22.
[52]
郝然, 艾芊, 姜子卿. 区域综合能源系统多主体非完全信息下的双层博弈策略[J]. 电力系统自动化, 2018, 42(4): 194-201.
HAO Ran, AI Qian, JIANG Ziqing. Bi-level game strategy for multi-agent with incomplete information in regional integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 194-201.
[53]
吴利兰, 荆朝霞, 吴青华, 等. 基于Stackelberg博弈模型的综合能源系统均衡交互策略[J]. 电力系统自动化, 2018, 42(4): 142-150.
WU Lilan, JING Zhaoxia, WU Qinghua, et al. Equilibrium strategies for integrated energy systems based on Stackelberg game model[J]. Automation of Electric Power Systems, 2018, 42(4): 142-150.
[54]
林凯骏, 吴俊勇, 郝亮亮, 等. 基于非合作博弈的冷热电联供微能源网运行策略优化[J]. 电力系统自动化, 2018, 42(6): 25-32.
LIN Kaijun, WU Junyong, HAO Liangliang, et al. Optimization of operation strategy for micro-energy grid with CCHP systems based on non-cooperative game[J]. Automation of Electric Power Systems, 2018, 42(6): 25-32.
[55]
吴福保, 刘晓峰, 孙谊媊, 等. 基于冷热电联供的多园区博弈优化策略[J]. 电力系统自动化, 2018, 42(13): 68-75.
WU Fubao, LIU Xiaofeng, SUN Yiqian, et al. Game optimization strategy for multiple parks based on combined cooling heating and power[J]. Automation of Electric Power Systems, 2018, 42(13): 68-75.
[56]
边辉, 陈丽娜, 马凡琳, 等. 基于中枢解耦与演化博弈的多农业园区综合能源系统优化运行[J]. 电力建设, 2022, 43(2): 26-36.
Abstract
农业园区用能需求集中且源荷多元化,当多个农业园区缺少合理运行方法且分布式接入农网,势必会对农业园区效益与农网安全产生不利影响。针对上述问题,提出一种基于中枢解耦与演化博弈的多农业园区综合能源系统(agricultural integrated energy system,AIES)优化运行方法。首先,构建含电-气-热的AIES耦合供能结构和农业园区需求侧响应模型;然后,利用能量中枢解耦方法将农网与园区解耦,建立农网层与多园区层的博弈模型,农网层考虑电压安全和用能成本,园区层考虑经济效益和农作物供能满意度;再次,提出基于多目标粒子群优化的演化博弈算法,解决了多园区、多目标复杂博弈下的强理性、难以达到Nash均衡的问题;最后,通过算例仿真验证了所提方法的可行性和有效性,实现了多农业园区综合能源系统的优化运行。
BIAN Hui, CHEN Lina, MA Fanlin, et al. Optimal operation strategy based on central decoupling and evolutionary game for multiple agricultural integrated energy systems[J]. Electric Power Construction, 2022, 43(2): 26-36.

There are concentrated energy demands and a variety of sources and loads in agricultural parks. When the multiple agricultural parks are dispersedly accessed to rural distribution network and lack of reasonable operation methods, it is bound to have a negative impact on the safety of rural distribution network and the benefit of agricultural parks. In view of the above problems, an optimal operation method based on central decoupling and evolutionary game for multiple agricultural integrated energy system (AIES) is proposed. Firstly, the AIES architecture with electricity-gas-heat and model of the demand response are constructed. Secondly, the rural distribution network is decoupled from the AIES by central decoupling. A two-layer game model including rural network layer and multi-park layer is established. The voltage safety margin and the energy cost are considered in the rural distribution network layer. The satisfaction of crop energy supply and economic benefit are considered in the agricultural park layer. Thirdly, the evolutionary game based on multi-objective particle swarm optimization is proposed. The problem of strong rationality and difficulty in achieving Nash equilibrium in a complex game with multiple parks and goals are solved. Finally, the feasibility and effectiveness of the method are verified by simulation examples. The optimal operation of multiple AIES is achieved.

[57]
王瑞, 程杉, 汪业乔, 等. 基于多主体主从博弈的区域综合能源系统低碳经济优化调度[J]. 电力系统保护与控制, 2022, 50(5): 12-21.
WANG Rui, CHENG Shan, WANG Yeqiao, et al. Low-carbon and economic optimization of a regional integrated energy system based on a master-slave game with multiple stakeholders[J]. Power System Protection and Control, 2022, 50(5): 12-21.
[58]
姚文亮, 王成福, 赵雨菲, 等. 不确定性环境下基于合作博弈的综合能源系统分布式优化[J]. 电力系统自动化, 2022, 46(20):43-53.
YAO Wenliang, WANG Chengfu, ZHAO Yufei, et al. Distributed optimization of integrated energy system based on cooperative game in uncertain environment[J]. Automation of Electric Power Systems, 2022, 46(20):43-53..
[59]
CHEN J H, ZHANG Y. A Lagrange relaxation-based alternating iterative algorithm for non-convex combined heat and power dispatch problem[J]. Electric Power Systems Research, 2019, 177: 105982.
[60]
WU C Y, GU W, BO R, et al. Energy trading and generalized Nash equilibrium in combined heat and power market[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3378-3387.
[61]
张勇, 李晨, 贾楠, 等. 基于改进二阶锥松弛的多区域电-气综合能源系统优化调度快速求解方法[J]. 电力自动化设备, 2020, 40(7): 39-45.
ZHANG Yong, LI Chen, JIA Nan, et al. Fast solution method for optimal dispatching of multi-area integrated electricity-gas systems based on improved second-order cone relaxation[J]. Electric Power Automation Equipment, 2020, 40(7): 39-45.
[62]
王磊, 周建平, 朱刘柱, 等. 基于分布式模型预测控制的综合能源系统多时间尺度优化调度[J]. 电力系统自动化, 2021, 45(13): 57-65.
WANG Lei, ZHOU Jianping, ZHU Liuzhu, et al. Multi-time-scale optimization scheduling of integrated energy system based on distributed model predictive control[J]. Automation of Electric Power Systems, 2021, 45(13): 57-65.

Funding

National Natural Science Foundation of China for Distinguished Young Scholar(51907084)
Applied Basic Research Foundation of Yunnan Province(2101AT070080)
Applied Basic Research Foundation of Yunnan Province(202101AT070610)
PDF(13410 KB)

Accesses

Citation

Detail

Sections
Recommended

/