基于GM(1,1)与BP神经网络的综合负荷预测

宋建,束洪春,董俊,梁雨婷,李雨龙,杨博

电力建设 ›› 2020, Vol. 41 ›› Issue (5) : 75-80.

PDF(1430 KB)
PDF(1430 KB)
电力建设 ›› 2020, Vol. 41 ›› Issue (5) : 75-80. DOI: 10.12204/j.issn.1000-7229.2020.05.009
新一代人工智能在配网规划和运行中的应用 ·栏目主持 余涛教授、张孝顺副教授、杨博副教授·

基于GM(1,1)与BP神经网络的综合负荷预测

  • 宋建,束洪春,董俊,梁雨婷,李雨龙,杨博
作者信息 +

Comprehensive Load Forecast Based on GM(1,1) and BP Neural Network

  • SONG Jian, SHU Hongchun, DONG Jun, LIANG Yuting, LI Yulong, YANG Bo
Author information +
文章历史 +

摘要

针对电力负荷预测中的单一预测模型存在的局限性,提出基于BP神经网络和GM(1,1)的残差修正组合模型。通过算法组合的方式进行系统建模,从而提高负荷预测模型的精度。首先通过GM(1,1)模型进行预测,得到灰色残差序列,利用灰色残差序列建立BP残差修正模型,利用该模型进行残差预测,最后将残差修正值和GM(1,1)模型预测值进行叠加得到最终所需的负荷预测值。利用该模型对某地区进行仿真实验,结果表明该修正模型具有较高的预测精度和实用性。

Abstract

Aiming at the limitation of the single forecasting model in power load forecast, this paper proposes a combined model based on BP neural network and GM (1,1) residual correction to improve the precision of load forecasting model.  The algorithm combination is used to model the system. First, the GM (1,1) model is used for prediction to obtain the gray residual sequence, which is used to establish the BP residual correction model. The model is used for residual prediction. Finally, the residual correction value and GM (1,1) are used. The model predicted values are superimposed to obtain the finally required load predicted value. The model is verified in a simulate case, whose results show that the modified model has high prediction accuracy and practicability.

关键词

  / 负荷预测 / GM(1 / 1) / BP神经网络 / 组合预测 / 残差修正

Key words

load forecast / GM(1 / 1) / BP neural network / combined forecast / residual correction

引用本文

导出引用
宋建,束洪春,董俊,梁雨婷,李雨龙,杨博. 基于GM(1,1)与BP神经网络的综合负荷预测[J]. 电力建设. 2020, 41(5): 75-80 https://doi.org/10.12204/j.issn.1000-7229.2020.05.009
SONG Jian, SHU Hongchun, DONG Jun, LIANG Yuting, LI Yulong, YANG Bo. Comprehensive Load Forecast Based on GM(1,1) and BP Neural Network[J]. Electric Power Construction. 2020, 41(5): 75-80 https://doi.org/10.12204/j.issn.1000-7229.2020.05.009
中图分类号: TM 715   

参考文献

[1]苏学能, 刘天琪, 曹鸿谦, 等. 基于Hadoop架构的多重分布式BP神经网络的短期负荷预测方法[J]. 中国电机工程学报, 2017, 37(17): 4966-4973, 5216.
SU Xueneng, LIU Tianqi, CAO Hongqian, et al. A multiple distributed BP neural networks approach for short-term load forecasting based on hadoop framework[J]. Proceedings of the CSEE, 2017, 37(17): 4966-4973, 5216.
[2]郭鸿业, 陈启鑫, 夏清, 等. 考虑经济因素时滞效应的月度负荷预测方法[J]. 电网技术, 2016, 40(2): 514-520.
GUO Hongye, CHEN Qixin, XIA Qing, et al. Study on mid-term electricity load forecast considering time lag effects of economic factors[J]. Power System Technology, 2016, 40(2): 514-520.
[3]陈吕鹏, 殷林飞, 余涛, 等. 基于深度森林算法的电力系统短期负荷预测[J]. 电力建设, 2018, 39(11): 42-50.
CHEN Lüpeng,YIN Linfei, YU Tao, et al. Short-term power load forecasting based on deep forest algorithm[J]. Electric Power Construction, 2018, 39(11): 42-50.
[4]龙勇, 苏振宇, 汪於. 基于季节调整和BP神经网络的月度负荷预测[J]. 系统工程理论与实践, 2018, 38(4): 1052-1060.
LONG Yong, SU Zhenyu, WANG Yu. Monthly load forecasting model based on seasonal adjustment and BP neural network[J]. Systems Engineering-Theory & Practice, 2018, 38(4): 1052-1060.
[5]丁松, 党耀国, 徐宁, 等. 非等间距GM(1, 1)模型性质及优化研究[J]. 系统工程理论与实践, 2018, 38(6): 1575-1585.
DING Song, DANG Yaoguo, XU Ning, et al. Research on properties and optimization of unequal interval GM(1, 1) model[J]. Systems Engineering-Theory & Practice, 2018, 38(6): 1575-1585.
[6]龙勇, 苏振宇, 盖晓平. 成分分解方法预测月度电力负荷[J]. 电力系统及其自动化学报, 2017, 29(5): 35-40.
LONG Yong, SU Zhenyu, GAI Xiaoping. Monthly load forecasting using component decomposition method[J]. Proceedings of the CSU-EPSA, 2017, 29(5): 35-40.
[7]刘承伟, 赵洪凯, 严豪, 等. 基于分数阶GM(1, 1)与BP神经网络的电力负荷预测[J]. 数学的实践与认识, 2018, 48(23): 145-151.
LIU Chengwei, ZHAO Hongkai, YAN Hao, et al. Power load forecasting based on fractional GM(1, 1) and BP neural network[J]. Mathematics in Practice and Theory, 2018, 48(23): 145-151.
[8]李龙, 魏靖, 黎灿兵, 等. 基于人工神经网络的负荷模型预测[J]. 电工技术学报, 2015, 30(8): 225-230.
LI Long, WEI Jing, LI Canbing, et al. Prediction of load model based on artificial neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 225-230.
[9]何耀耀, 闻才喜, 许启发. 基于Epanechnikov核与最优窗宽组合的中期电力负荷概率密度预测方法[J]. 电力自动化设备, 2016, 36(11): 120-126.
HE Yaoyao, WEN Caixi, XU Qifa. Mid-term power load probability density forecast based on Epanechnikov kernel and optimal window bandwidth[J]. Electric Power Automation Equipment, 2016, 36(11): 120-126.
[10]刘文博, 傅旭华, 王蕾, 等. 电力负荷无迹卡尔曼阈值多频级WNN区间预估[J]. 电网技术, 2016, 40(2): 527-533.
LIU Wenbo, FU Xuhua, WANG Lei, et al. WNN interval estimation algorithm for electric load forecasting based on threshold multi-frequency unscented kalman filter[J]. Power System Technology, 2016, 40(2): 527-533.
[11]王吉权, 王福林, 董志贵, 等. 基于改进BP神经网络的电力负荷预测[J]. 数学的实践与认识, 2017, 47(9): 276-284.
WANG Jiquan, WANG Fulin, DONG Zhigui, et al. Electrical load forecasting based on improved BP neural network[J]. Mathematics in Practice and Theory, 2017, 47(9): 276-284.
[12]谷云东, 马冬芬, 程红超. 基于相似数据选取和改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报, 2019, 31(5): 64-69.
GU Yundong, MA Dongfen, CHENG Hongchao. Power load forecasting based on similar-data selection and improved gradient boosting decision tree[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 64-69.
[13]姚李孝, 刘学琴. 基于小波分析的月度负荷组合预测[J]. 电网技术, 2007, 31(19): 65-68.
YAO Lixiao, LIU Xueqin. A wavelet analysis based combined model for monthly load forecasting[J]. Power System Technology, 2007, 31(19): 65-68.
[14]束洪春, 邬乾晋, 张广斌, 等. 基于神经网络的单端行波故障测距方法[J]. 中国电机工程学报, 2011, 31(4): 85-92.
SHU Hongchun, WU Qianjin, ZHANG Guangbin, et al. Single terminal traveling wave fault location method based on ANN[J]. Proceedings of the CSEE, 2011, 31(4): 85-92.
[15]杨茂, 董骏城, 罗芫, 等. 基于近似熵的电力系统负荷预测误差分析[J]. 电力系统保护与控制, 2016, 44(23): 24-29.
YANG Mao, DONG Juncheng, LUO Yuan, et al. Study of power system load forecasting errors based on approximate entropy[J]. Power System Protection and Control, 2016, 44(23): 24-29.

基金

国家自然科学基金项目(51977102,61963020)

PDF(1430 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/