计及信誉值和电气距离的分布式电能交易区块链模型

李振伟, 刘洋, 许立雄, 朱廷虎, 刘任

电力建设 ›› 2023, Vol. 44 ›› Issue (2) : 132-144.

PDF(9088 KB)
PDF(9088 KB)
电力建设 ›› 2023, Vol. 44 ›› Issue (2) : 132-144. DOI: 10.12204/j.issn.1000-7229.2023.02.013
电力经济研究

计及信誉值和电气距离的分布式电能交易区块链模型

作者信息 +

Distributed Energy Transaction Blockchain Model Considering Reputation Value and Electrical Distance

Author information +
文章历史 +

摘要

多微电网间分布式交易可促进新能源的消纳,提高配电网运行的安全性。然而其个体趋利性强和出力不确定性等问题可能使交易主体发生严重违约行为,影响分布式电能交易的经济性。因此,提出计及信誉值和电气距离的多微电网分布式电能交易区块链模型。首先,针对分布式电能交易中存在的违约行为,提出基于合约完成率的信誉值评估模型,并结合其报价信息调整购售电主体的交易次序。其次,为促进交易主体选择就近交易和提高交易效率,在智能合约中设计了计及电气距离的交易撮合机制,并提出根据市场进程和自身信誉情况的报价更新策略。再次,为实现配电网运行的安全性,在交易撮合过程中引入了实时动态网络安全校核方法。最后,基于Matlab和IDE-Remix平台对智能合约进行仿真分析,算例结果证明了所提分布式交易机制的合理性和有效性。

Abstract

Distributed transactions between multiple microgrids can promote the consumption of new energy and improve the safety of distribution network operation. Nevertheless, the problems such as strong individual profit-seeking and output uncertainty may cause serious breaches of contract and affect the economics of distributed transactions. Therefore, this paper puts forward a distributed energy transaction blockchain model considering reputation value and electrical distance. Firstly, the reputation value evaluation model based on the historical contract completion rate is proposed, and the transaction order of buyers and sellers is adjusted according to the quotation and reputation value. Secondly, in order to promote transaction subjects to choose nearby transactions and improve transaction efficiency, a transaction matching mechanism based on electrical distance is designed in smart contracts. And an adaptive quotation update strategy based on market progress and its own reputation are proposed. Thirdly, a real-time dynamic network security checking method is introduced to realize the safety of distribution network operation. Finally, the smart contract is simulated and analyzed with Matlab and IDE-Remix platform, and the results verify the feasibility and effectiveness of the proposed distributed transaction mechanism.

关键词

区块链技术 / 多微电网 / 分布式交易 / 信誉值 / 电气距离

Key words

blockchain / multi-microgrid / distributed transaction / reputation value / electrical distance

引用本文

导出引用
李振伟, 刘洋, 许立雄, . 计及信誉值和电气距离的分布式电能交易区块链模型[J]. 电力建设. 2023, 44(2): 132-144 https://doi.org/10.12204/j.issn.1000-7229.2023.02.013
Zhenwei LI, Yang LIU, Lixiong XU, et al. Distributed Energy Transaction Blockchain Model Considering Reputation Value and Electrical Distance[J]. Electric Power Construction. 2023, 44(2): 132-144 https://doi.org/10.12204/j.issn.1000-7229.2023.02.013
中图分类号: TM73   

参考文献

[1]
穆程刚, 丁涛, 董江彬, 等. 基于私有区块链的去中心化点对点多能源交易系统研制[J]. 中国电机工程学报, 2021, 41(3): 878-890.
MU Chenggang, DING Tao, DONG Jiangbin, et al. Development of decentralized peer-to-peer multi-energy trading system based on private blockchain technology[J]. Proceedings of the CSEE, 2021, 41(3): 878-890.
[2]
刘杨, 刘天羽. 基于区块链和动态定价模型的微电网P2P能源交易[J]. 智慧电力, 2022, 50(3):30-36.
LIU Yang, LIU Tianyu. P2P energy trading in microgrid based on blockchain and dynamic pricing model[J]. Smart Power, 2022, 50(3):30-36..
[3]
秦金磊, 孙文强, 李整, 等. 适用于微电网区块链的信用共识机制[J]. 电力系统自动化, 2020, 44(15): 10-18.
QIN Jinlei, SUN Wenqiang, LI Zheng, et al. Credit consensus mechanism for microgrid blockchain[J]. Automation of Electric Power Systems, 2020, 44(15): 10-18.
[4]
王健, 周念成, 王强钢, 等. 基于区块链和连续双向拍卖机制的微电网直接交易模式及策略[J]. 中国电机工程学报, 2018, 38(17): 5072-5084.
WANG Jian, ZHOU Niancheng, WANG Qianggang, et al. Electricity direct transaction mode and strategy in microgrid based on blockchain and continuous double auction mechanism[J]. Proceedings of the CSEE, 2018, 38(17): 5072-5084.
[5]
谢开, 张显, 张圣楠, 等. 区块链技术在电力交易中的应用与展望[J]. 电力系统自动化, 2020, 44(19): 19-28.
XIE Kai, ZHANG Xian, ZHANG Shengnan, et al. Application and prospect of blockchain technology in electricity trading[J]. Automation of Electric Power Systems, 2020, 44(19): 19-28.
[6]
杨晓东, 张有兵, 卢俊杰, 等. 基于区块链技术的能源局域网储能系统自动需求响应[J]. 中国电机工程学报, 2017, 37(13): 3703-3716.
YANG Xiaodong, ZHANG Youbing, LU Junjie, et al. Blockchain-based automated demand response method for energy storage system in an energy local network[J]. Proceedings of the CSEE, 2017, 37(13): 3703-3716.
[7]
路尧, 胡健, 张晓杰, 等. 基于DPoA共识机制的分布式电力交易信用激励[J]. 电力自动化设备, 2022, 42(1): 116-123.
LU Yao, HU Jian, ZHANG Xiaojie, et al. Credit incentives of distributed power transaction based on DPoA consensus mechanism[J]. Electric Power Automation Equipment, 2022, 42(1): 116-123.
[8]
龚钢军, 王慧娟, 张桐, 等. 基于区块链的电力现货交易市场研究[J]. 中国电机工程学报, 2018, 38(23): 6955-6966, 7129.
GONG Gangjun, WANG Huijuan, ZHANG Tong, et al. Research on electricity market about spot trading based on blockchain[J]. Proceedings of the CSEE, 2018, 38(23): 6955-6966, 7129.
[9]
ZHANG X Y, ZHU S Y, HE J P, et al. Credit rating based real-time energy trading in microgrids[J]. Applied Energy, 2019, 236: 985-996.
In this paper, we investigate the problem of credit rating management in energy trading among microgrids subject to transmission losses and wheeling cost. The main concern is how to constrain the default behaviors of retailers to enable all the consumers and retailers to be actively involved in the energy trading. By endowing retailers as leaders and consumers as followers, we establish a multi-leader multi-follower dynamic game model and propose a scorecard model based on logistic regression to evaluate retailers' credit ratings. The concept of trust degree is then introduced for all the retailers as a punitive measure to relate their credit ratings with the reduction in the profit. With such a strategy, we can theoretically show that a unique equilibrium exists for the dynamic game model. Moreover, a best response algorithm is proposed to make the consumers and retailers achieve the equilibrium iteratively. Numerical simulations are provided to demonstrate the effectiveness and efficiency of the proposed method. It is found that default behaviors of selfish retailers can be greatly constrained with only a slight degradation of the interests of other participants, thereby promoting the establishment of a trustworthy trading market. We also discuss the influence level of transmission losses on trading behaviors of retailers and consumers.
[10]
祁兵, 夏琰, 李彬, 等. 基于区块链激励机制的光伏交易机制设计[J]. 电力系统自动化, 2019, 43(9): 132-139, 153.
QI Bing, XIA Yan, LI Bin, et al. Photovoltaic trading mechanism design based on blockchain-based incentive mechanism[J]. Automation of Electric Power Systems, 2019, 43(9): 132-139, 153.
[11]
平健, 严正, 陈思捷, 等. 基于区块链的分布式能源交易市场信用风险管理方法[J]. 中国电机工程学报, 2019, 39(24): 7137-7145, 7487.
PING Jian, YAN Zheng, CHEN Sijie, et al. Credit risk management in distributed energy resource transactions based on blockchain[J]. Proceedings of the CSEE, 2019, 39(24): 7137-7145, 7487.
[12]
祝垒, 陈中, 颜云松, 等. 基于权威证明的微电网分层交易策略[J]. 电网技术, 2021, 45(11): 4356-4365.
ZHU Lei, CHEN Zhong, YAN Yunsong, et al. Hierarchical transaction strategy of microgrid based on proof of authority[J]. Power System Technology, 2021, 45(11): 4356-4365.
[13]
王冰钰, 颜拥, 文福拴, 等. 基于区块链的分布式电力交易机制[J]. 电力建设, 2019, 40(12): 3-10.
摘要
随着光伏(photovoltaic,PV)发电的大力发展和上网补贴的逐步下调,就近消纳的优势得以显现,这促进了分布式发电的市场化交易 (market trading for distributed generation, MTDG)。MTDG的发、用电双方都在电网末端,具有参与主体数量大、单笔交易规模小、点对点等特点。传统的中心化交易模式存在透明度低、成本高、效率低下、数据不可信等问题,不适合MTDG。区块链技术具有去中心化、不可篡改、匿名等特点,满足MTDG的需要,能够提升这种交易的安全性、自主性、透明性等。在此背景下,文章将区块链技术引入MTDG,针对MTDG的特点,构建了相应的交易机制、结算机制和奖惩机制。最后,采用算例对所发展的MTDG机制进行了说明。
WANG Bingyu, YAN Yong, WEN Fushuan, et al. A blockchain based distributed power trading mechanism[J]. Electric Power Construction, 2019, 40(12): 3-10.
With the rapid development of photovoltaic (PV) power generation and the gradual downward subsidies, the advantages of satisfying load demand by local generation supply are becoming more and more significant, and market trading for distributed generation (MTDG) is then promoted. In MTDG, both power generation and load demand are located at the end of the utility grid, with some features exhibited including numerous participating entities, small transaction sizes, and point-to-point transactions. The traditional centralized transaction model suffers some problems such as low transparency, high cost, low efficiency, and untrustworthy data, and is not suitable for MTDG. Blockchain technology has the characteristics of decentralization, non-tampering, and anonymity, and can well meet the needs of MTDG for improved security, autonomy and transparency of electricity transactions. Given this background, the blockchain technology is applied in MTDG, and the corresponding trading mechanism, settlement mechanism and reward and punishment mechanism are developed considering the characteristics of MTDG. Finally, an example is employed to demonstrate the developed MTDG mechanism.
[14]
JOGUNOLA O, WANG W Z, ADEBISI B. Prosumers matching and least-cost energy path optimisation for peer-to-peer energy trading[J]. IEEE Access, 2021, 8: 95266-95277.
[15]
秦金磊, 孙文强, 李整, 等. 基于区块链和改进型拍卖算法的微电网电能交易方法[J]. 电力自动化设备, 2020, 40(8): 2-10.
QIN Jinlei, SUN Wenqiang, LI Zheng, et al. Energy transaction method of microgrid based on blockchain and improved auction algorithm[J]. Electric Power Automation Equipment, 2020, 40(8): 2-10.
[16]
KHORASANY M. Lightweight blockchain framework for location-aware peer-to-peer energy trading[J]. International Journal of Electrical Power & Energy Systems, 2021, 127: 106610.
[17]
GUERRERO J, SOK B, CHAPMAN A C, et al. Electrical-distance driven peer-to-peer energy trading in a low-voltage network[J]. Applied Energy, 2021, 287: 116598.
[18]
沈泽宇, 陈思捷, 严正, 等. 基于区块链的分布式能源交易技术[J]. 中国电机工程学报, 2021, 41(11): 3841-3851.
SHEN Zeyu, CHEN Sijie, YAN Zheng, et al. Distributed energy trading technology based on blockchain[J]. Proceedings of the CSEE, 2021, 41(11): 3841-3851.
[19]
王毅, 赵辉辉, 侯兴哲, 等. 基于链码和多阶段混合拍卖机制的微电网分布式电能交易模型[J]. 电网技术, 2020, 44(4): 1302-1309.
WANG Yi, ZHAO Huihui, HOU Xingzhe, et al. Distributed electricity transaction mode in microgrid based on chaincode and multi-stage hybrid auction mechanism[J]. Power System Technology, 2020, 44(4): 1302-1309.
[20]
BAROCHE T, PINSON P, LATIMIER R L G, et al. Exogenous cost allocation in peer-to-peer electricity markets[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2553-2564.
[21]
YAO H T, XIANG Y, HU S, et al. Optimal prosumers’ peer-to-peer energy trading and scheduling in distribution networks[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 1466-1477.
[22]
马腾, 刘洋, 许立雄, 等. 基于区块链的配电侧多微电网电能去中心化交易模型[J]. 电网技术, 2021, 45(6): 2237-2247.
MA Teng, LIU Yang, XU Lixiong, et al. Energy decentralized transaction model of multi-microgrid in distribution side based on blockchain[J]. Power System Technology, 2021, 45(6): 2237-2247.
[23]
PAUDEL A, SAMPATH L P M I, YANG J W, et al. Peer-to-peer energy trading in smart grid considering power losses and network fees[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4727-4737.
[24]
WANG N, XU W S, XU Z Y, et al. Peer-to-peer energy trading among microgrids with multidimensional willingness[J]. Energies, 2018, 11(12): 3312.
[25]
吴治国, 刘继春, 张帅, 等. 多售电主体点对点交易模式及其动态过网费机制[J]. 电力系统自动化, 2021, 45(19): 100-108.
WU Zhiguo, LIU Jichun, ZHANG Shuai, et al. Peer-to-peer transaction model of multiple power sellers and its dynamic network fee mechanism[J]. Automation of Electric Power Systems, 2021, 45(19): 100-108.
[26]
HAN D. Smart contract architecture for decentralized energy trading and management based on blockchains[J]. Energy, 2020, 199: 117417.
[27]
胡钰, 李华强, 李山山, 等. 基于区块链的产消用户端对端电能交易方法[J]. 电力自动化设备, 2022, 42(1): 101-108.
HU Yu, LI Huaqiang, LI Shanshan, et al. Peer-to-peer power trading method for proconsumers based on blockchain[J]. Electric Power Automation Equipment, 2022, 42(1): 101-108.

基金

四川省科技计划项目(2021YFSY0019)

编辑: 张小飞
PDF(9088 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/