基于IOSLAB的可再生能源发电投资个人支付意愿选择实验研究

刘贞,朱开伟,贲可蒙,吕指臣,蒲刚清

电力建设 ›› 2015, Vol. 36 ›› Issue (12) : 131-36.

PDF(755 KB)
PDF(755 KB)
电力建设 ›› 2015, Vol. 36 ›› Issue (12) : 131-36. DOI: 10.3969/j.issn.1000-7229.2015.12.020
电力经济研究

基于IOSLAB的可再生能源发电投资个人支付意愿选择实验研究

  • 刘贞1,2,朱开伟1,贲可蒙1,吕指臣1,蒲刚清1
作者信息 +

Choice Experiment Study on Personal Willingness to Pay for Renewable Energy Generation Investment Based on IOSLAB System

  • LIU Zhen1,2,ZHU Kaiwei1,BEN Kemeng1,LYU Zhicheng1,PU Gangqing1
Author information +
文章历史 +

摘要

根据中国能源中长期发展规划,2020年非化石能源比例将达到15%。为了制定有效的可再生能源投资激励政策,运用个人-组织-社会实验平台(individual, organization and society laboratory, IOSLAB)进行选择实验研究,分析个人对可再生能源投资的支付意愿,从经济、环境和社会的角度综合评价可再生能源投资。研究通过现场实验的方式,采用IOSLAB系统对当地居民进行现场调查。并采用多项式Probity模型求解支付意愿,模型假设所有的实验参与者对每个属性的价值具有相同偏好。通过对研究结果的分析,发现社会认可发展可再生能源会减少空气污染,增加社会就业,并愿意支付相关费用以弥补发展可再生能源所带来的部分额外成本。研究结果有助于决策者制定可再生能源投资政策。

Abstract

According to the long-term development planning of Chinas energy, the proportion of non-fossil energy will reach to 15%. In order to develop effective investment incentive policies for renewable energy, this paper applied IOSLAB (Individual, Organization and Society Laboratory) platform to carry out choice experiment (CE) study, analyzed personal willingness to pay for renewable energy investment, and comprehensively evaluated the renewable energy investment from aspects of economy, environment and society. IOSLAB system was used to survey the local residents through field experiments. Moreover, a multinomial Probity model (MNP) was applied to solve the willingness to pay for renewable energy investment. MNP assumed that all respondents had the same preferences for the attributes being valued. Through the analysis on the research results, it is found that the public pay related fees to cover part of the extra cost brought by the development of renewable energy, because renewable energy can reduce the air pollution and increase social employment. The research results can help decision makers to develop the investment policies of renewable energy.

关键词

可再生能源 / 选择实验 / 支付意愿 / 多项式Probity模型 / 个人-组织-社会实验平台(IOSLAB)系统

Key words

renewable energy / choice experiment / willingness to pay / multinomial Probity model / IOSLAB system

引用本文

导出引用
刘贞,朱开伟,贲可蒙,吕指臣,蒲刚清. 基于IOSLAB的可再生能源发电投资个人支付意愿选择实验研究[J]. 电力建设. 2015, 36(12): 131-36 https://doi.org/10.3969/j.issn.1000-7229.2015.12.020
LIU Zhen,ZHU Kaiwei,BEN Kemeng,LYU Zhicheng,PU Gangqing. Choice Experiment Study on Personal Willingness to Pay for Renewable Energy Generation Investment Based on IOSLAB System[J]. Electric Power Construction. 2015, 36(12): 131-36 https://doi.org/10.3969/j.issn.1000-7229.2015.12.020
中图分类号: TM 619   

参考文献

[1]Intergovernmental panel on climate change. IPCC special report on carbon dioxide storage[M]. New York: Cambridge University Press,2005.
[2]曾晓斌. 我国新能源投资的“冷”思考[J]. 价值工程, 2012(1):122-123.
Zeng Xiaobin. A reconsideration of the new energy investment in China[J]. Value Engineering, 2012(1):122-123.
[3]史运杰. 我国可再生能源投资分析[J].时代金融,2012(3):87.
Shi Yunjie. A analysis of renewable energy investment[J]. Times Finance, 2012(3):87.
[4]段宇平, 吴昊. 中国全球能源投资分析[J]. 中外能源, 2015(3):9-15.
Duan Yuping, Wu Hao. China’s overseas energy investment overview[J]. Sino-Global Energy, 2015(3):9-15.
[5]董娟. 全球可再生能源发展现状及投资趋势 分析[J]. 当代石油化工, 2014(8):25-31.
Dong Juan. Development status of global renewable energy and analysis on its investment trends[J]. Petroleum & Petrochemical Today, 2014(8):25-31.
[6]Louviere J, Hensher D A. Using discrete choice models with experimental design data to forecast consumer demand for a unique cultural event[J]. Journal of Consumer Research, 1983, 10(3):348-361.
[7]Louviere J,Woodworth G. Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data[J].Journal of Marketing Research, 1983, 20(4):350-367.
[8]张小红.基于选择实验法的支付意愿研究——以湘江水污染治理为例[J].资源开发与市场, 2012,28(7)600-603.
Zhang Xiaohong. Study on willingness to pay based on choice experiment method: A case study of Xiangjiang river water pollution[J]. Resource Development & Market, 2012, 28(7): 600-603.
[9]Layton D F. Random coefficient models for stated preference surveys[J]. Journal of Environmental Economics and Management, 2000,40(1):21-36.
[10]Yoo S H, Kwak S J, Lee J S. Using a choice experiment to measure the environmental costs of air pollution impacts in Seoul.[J]. Journal of Environmental Management, 2008, 86(1):308-318.
[11]Adamowicz W, Hanley N, Wright R E, et al. Using choice experiments to value the environment[J]. Environmental & Resource Economics, 1998, 11(3-4):413-428.
[12]SPSS. SPSS conjoint 14.0[M]. Chicago: SPSS Inc.. 2005.
[13]刘贞,施於人. 微观经济与宏观经济 实验原理、方法与案例[M]. 北京:机械工业出版社,2012:21-22.
[14]Geweke J. Bayesian inference in econometric models using Monte Carlo integration[J]. Econometrica, 1989, 57(6):1317-39.
[15]Keane M P. A computationally practical simulation estimator for panel data[J]. Econometrica, 1994, 62(1):95-116.
[16]Hajivassiliou V A, Mcfadden D L. The method of stimulated scores for the estimation of LDV models[J]. Econométrica Journal of the Econometric Society, 1998, 66(4):863-896.
[17]Park T, Loomis J B, Creel M. Confidence intervals for evaluating benefits estimates from dichotomous choice contingent valuation studies.[J]. Land Economics, 1991, 67(1):64-73.
[18]Krinsky I, Robb A L. On approximating the statistical properties of elastic ties[J]. Review of Economics & Statistics, 1986, 68(4):715-19.

基金

国家自然科学基金项目(71573026, 71073095)。


PDF(755 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/