PDF(7466 KB)
Electric Bus Charging Load Forecasting Method Based on Spectral Clustering and LSTM Neural Network
WANG Zhe, WAN Bao, LING Tianhan, DONG Xiaohong, MU Yunfei, DENG Youjun, TANG Shuyi
Electric Power Construction ›› 2021, Vol. 42 ›› Issue (6) : 58-66.
PDF(7466 KB)
PDF(7466 KB)
Electric Bus Charging Load Forecasting Method Based on Spectral Clustering and LSTM Neural Network
At present, the penetration rate, charging frequency and charging capacity of electric buses are relatively high, so the charging load has a non-negligible impact on the operation and dispatch of the power grid. So, the charging load forecasting research has important theoretical and practical significance, but the intermittent and random charging behavior increase the spatial forecasting difficulty. Therefore, the charging load forecasting method of electric buses is proposed on the basis of spectral clustering and long short-term memory (LSTM) neural network. First of all, the charging load curve is clustered according to spectral clustering considering the distance and the shape. And then, considering the key factors that affect the charging load, such as historical load, temperature and day type, the model parameter of LSTM neural network is trained using each cluster charging load, and the charging load of each cluster is predicted. Then, the total charging load of the forecasting day is to sum the forecasting results of different clusters. Finally, on the basis of the historical real data in a certain city, the proposed method is verified. The result shows the mean absolute percentage error (MAPE) of charging load prediction result of the proposed method is below 11%, and the accuracy of load forecasting is improved.
spectral clustering / long short-term memory network (LSTM) / electric bus / load forecasting
| [1] |
罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011,35(14):36-42.
|
| [2] |
|
| [3] |
袁正平, 周伟, 王文斌. 电动汽车充电负荷预测方法研究[J]. 华东电力, 2013,41(12):2567-2572.
|
| [4] |
|
| [5] |
|
| [6] |
牛东晓, 马天男, 王海潮, 等. 基于KPCA和NSGAⅡ优化CNN参数的电动汽车充电站短期负荷预测[J]. 电力建设, 2017,38(3):85-92.
|
| [7] |
王琨, 高敬更, 张勇红, 等. 基于LSTM神经网络的复合变量电动汽车充电负荷预测方法技术研究[J]. 工业仪表与自动化装置, 2019(1):27-31.
|
| [8] |
王潇笛, 刘俊勇, 刘友波, 等. 采用自适应分段聚合近似的典型负荷曲线形态聚类算法[J]. 电力系统自动化, 2019,43(1):110-118.
|
| [9] |
|
| [10] |
庞传军, 余建明, 冯长有, 等. 基于LSTM自动编码器的电力负荷聚类建模及特性分析[J]. 电力系统自动化, 2020,44(23):57-63.
|
| [11] |
|
| [12] |
金之榆, 王毛毛, 史会磊. 基于DBSCAN和改进K-means聚类算法的电力负荷聚类研究[J]. 东北电力技术, 2019,40(6):10-14.
|
| [13] |
|
| [14] |
|
| [15] |
艾欣, 杨子豪, 胡寰宇, 等. 基于改进k-means算法的VPP负荷曲线聚类方法及应用[J]. 电力建设, 2020,41(5):28-36.
|
| [16] |
林顺富, 田二伟, 符杨, 等. 基于信息熵分段聚合近似和谱聚类的负荷分类方法[J]. 中国电机工程学报, 2017,37(8):2242-2253.
|
| [17] |
端祝超. 基于数据简化拟合的电动公交车充电负荷预测[J]. 电工电气, 2020(3):23-27.
|
| [18] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019,43(8):131-137.
|
| [19] |
|
| [20] |
彭勃, 张逸, 熊军, 等. 结合负荷形态指标的电力负荷曲线两步聚类算法[J]. 电力建设, 2016,37(6):96-102.
|
| [21] |
杨甲甲, 刘国龙, 赵俊华, 等. 采用长短期记忆深度学习模型的工业负荷短期预测方法[J]. 电力建设, 2018,39(10):20-27.
|
| [22] |
陈吕鹏, 殷林飞, 余涛, 等. 基于深度森林算法的电力系统短期负荷预测[J]. 电力建设, 2018,39(11):42-50.
|
| [23] |
|
| [24] |
中国气象数据网. 中国地面国际交换站气候资料日值数据集(V3.0). 2019[2020-12-30]. https://data.cma.cn.
|
/
| 〈 |
|
〉 |