Electric Bus Charging Load Forecasting Method Based on Spectral Clustering and LSTM Neural Network

WANG Zhe, WAN Bao, LING Tianhan, DONG Xiaohong, MU Yunfei, DENG Youjun, TANG Shuyi

Electric Power Construction ›› 2021, Vol. 42 ›› Issue (6) : 58-66.

PDF(7466 KB)
PDF(7466 KB)
Electric Power Construction ›› 2021, Vol. 42 ›› Issue (6) : 58-66. DOI: 10.12204/j.issn.1000-7229.2021.06.006
Key Technologies of Electric Vehicle Participating in Power Grid Dispatching?Hosed by Associate Professor FU Zhixin?

Electric Bus Charging Load Forecasting Method Based on Spectral Clustering and LSTM Neural Network

Author information +
History +

Abstract

At present, the penetration rate, charging frequency and charging capacity of electric buses are relatively high, so the charging load has a non-negligible impact on the operation and dispatch of the power grid. So, the charging load forecasting research has important theoretical and practical significance, but the intermittent and random charging behavior increase the spatial forecasting difficulty. Therefore, the charging load forecasting method of electric buses is proposed on the basis of spectral clustering and long short-term memory (LSTM) neural network. First of all, the charging load curve is clustered according to spectral clustering considering the distance and the shape. And then, considering the key factors that affect the charging load, such as historical load, temperature and day type, the model parameter of LSTM neural network is trained using each cluster charging load, and the charging load of each cluster is predicted. Then, the total charging load of the forecasting day is to sum the forecasting results of different clusters. Finally, on the basis of the historical real data in a certain city, the proposed method is verified. The result shows the mean absolute percentage error (MAPE) of charging load prediction result of the proposed method is below 11%, and the accuracy of load forecasting is improved.

Key words

spectral clustering / long short-term memory network (LSTM) / electric bus / load forecasting

Cite this article

Download Citations
Zhe WANG , Bao WAN , Tianhan LING , et al . Electric Bus Charging Load Forecasting Method Based on Spectral Clustering and LSTM Neural Network[J]. Electric Power Construction. 2021, 42(6): 58-66 https://doi.org/10.12204/j.issn.1000-7229.2021.06.006

References

[1]
罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011,35(14):36-42.
LUO Zhuowei, HU Zechun, SONG Yonghua, et al. Study on plug-in electric vehicles charging load calculating[J]. Automation of Electric Power Systems, 2011,35(14):36-42.
[2]
WANG H L, ZHANG Y J, MAO H P. Load forecasting method of EVs based on time charging probability[C]// 2018 International Conference on Power System Technology (POWERCON). November 6-8, 2018, Guangzhou, China. IEEE, 2018:1731-1735.
[3]
袁正平, 周伟, 王文斌. 电动汽车充电负荷预测方法研究[J]. 华东电力, 2013,41(12):2567-2572.
YUAN Zhengping, ZHOU Wei, WANG Wenbin. Charging load forecasting method for electric vehicles[J]. East China Electric Power, 2013,41(12):2567-2572.
[4]
WANG Y, XIA Q, KANG C Q. Secondary forecasting based on deviation analysis for short-term load forecasting[J]. IEEE Transactions on Power Systems, 2011,26(2):500-507.
[5]
ZHU J C, YANG Z L, CHANG Y, et al. A novel LSTM based deep learning approach for multi-time scale electric vehicles charging load prediction[C]// 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). May 21-24, 2019, Chengdu, China. IEEE, 2019: 3531-3536.
[6]
牛东晓, 马天男, 王海潮, 等. 基于KPCA和NSGAⅡ优化CNN参数的电动汽车充电站短期负荷预测[J]. 电力建设, 2017,38(3):85-92.
NIU Dongxiao, MA Tiannan, WANG Haichao, et al. Short-term load forecasting of electric vehicle charging station based on KPCA and CNN parameters optimized by NSGAⅡ[J]. Electric Power Construction, 2017,38(3):85-92.
[7]
王琨, 高敬更, 张勇红, 等. 基于LSTM神经网络的复合变量电动汽车充电负荷预测方法技术研究[J]. 工业仪表与自动化装置, 2019(1):27-31.
WANG Kun, GAO Jinggeng, ZHANG Yonghong, et al. Study on forecasting method of charging load of hybrid variable electric vehicle based on LSTM neural network[J]. Industrial Instrumentation & Automation, 2019(1):27-31.
[8]
王潇笛, 刘俊勇, 刘友波, 等. 采用自适应分段聚合近似的典型负荷曲线形态聚类算法[J]. 电力系统自动化, 2019,43(1):110-118.
WANG Xiaodi, LIU Junyong, LIU Youbo, et al. Shape clustering algorithm of typical load curves based on adaptive piecewise aggregate approximation[J]. Automation of Electric Power Systems, 2019,43(1):110-118.
[9]
DONG X S, QIAN L J, HUANG L. Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach[C]// 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). February 13-16, 2017, Jeju, Korea (South). IEEE, 2017: 119-125.
[10]
庞传军, 余建明, 冯长有, 等. 基于LSTM自动编码器的电力负荷聚类建模及特性分析[J]. 电力系统自动化, 2020,44(23):57-63.
PANG Chuanjun, YU Jianming, FENG Changyou, et al. Clustering modeling and characteristic analysis of power load based on long-short-term-[J]. Automation of Electric Power Systems, 2020,44(23):57-63.
[11]
SUN R Q, XIAO X Q, ZHOU F, et al. Research of power user load classification method based on K-means and FSVM[C]// 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). March 15-17, 2019, Chengdu, China. IEEE, 2019: 2138-2142.
[12]
金之榆, 王毛毛, 史会磊. 基于DBSCAN和改进K-means聚类算法的电力负荷聚类研究[J]. 东北电力技术, 2019,40(6):10-14.
JIN Zhiyu, WANG Maomao, SHI Huilei. Research on power load clustering based on DBSCAN and improved K-means clustering algorithm[J]. Northeast Electric Power Technology, 2019,40(6):10-14.
[13]
YU T M, YANG J H, LU W. Dynamic background subtraction using histograms based on fuzzy C-means clustering and fuzzy nearness degree[J]. IEEE Access, 2019,7:14671-14679.
[14]
DINESH C, MAKONIN S, BAJIć I V. Residential power forecasting based on affinity aggregation spectral clustering [J]. IEEE Access, 2020,8:99431-99444.
[15]
艾欣, 杨子豪, 胡寰宇, 等. 基于改进k-means算法的VPP负荷曲线聚类方法及应用[J]. 电力建设, 2020,41(5):28-36.
AI Xin, YANG Zihao, HU Huanyu, et al. A load curve clustering method based on improved K-means algorithm for virtual power plant and its application[J]. Electric Power Construction, 2020,41(5):28-36.
[16]
林顺富, 田二伟, 符杨, 等. 基于信息熵分段聚合近似和谱聚类的负荷分类方法[J]. 中国电机工程学报, 2017,37(8):2242-2253.
LIN Shunfu, TIAN Erwei, FU Yang, et al. Power load classification method based on information entropy piecewise aggregate approximation and spectral clustering[J]. Proceedings of the CSEE, 2017,37(8):2242-2253.
[17]
端祝超. 基于数据简化拟合的电动公交车充电负荷预测[J]. 电工电气, 2020(3):23-27.
DUAN Zhuchao. Electric bus charging load forecast based on data simplification fitting[J]. Electrotechnics Electric, 2020(3):23-27.
[18]
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019,43(8):131-137.
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019,43(8):131-137.
[19]
SUN Y P, GAO Y J, YANG W H, et al. Research on user optimal aggregation based on demand response potential spectrum clustering analysis[J]. The Journal of Engineering, 2017,2017(13):2152-2157.
[20]
彭勃, 张逸, 熊军, 等. 结合负荷形态指标的电力负荷曲线两步聚类算法[J]. 电力建设, 2016,37(6):96-102.
PENG Bo, ZHANG Yi, XIONG Jun, et al. A two-step clustering algorithm combined with load shape index for power load curve[J]. Electric Power Construction, 2016,37(6):96-102.
[21]
杨甲甲, 刘国龙, 赵俊华, 等. 采用长短期记忆深度学习模型的工业负荷短期预测方法[J]. 电力建设, 2018,39(10):20-27.
YANG Jiajia, LIU Guolong, ZHAO Junhua, et al. A long short term memory based deep learning method for industrial load forecasting[J]. Electric Power Construction, 2018,39(10):20-27.
[22]
陈吕鹏, 殷林飞, 余涛, 等. 基于深度森林算法的电力系统短期负荷预测[J]. 电力建设, 2018,39(11):42-50.
CHEN Lüpeng, YIN Linfei, YU Tao, et al. Short-term power load forecasting based on deep forest algorithm[J]. Electric Power Construction, 2018,39(11):42-50.
[23]
MUZAFFAR S, AFSHARI A. Short-term load forecasts using LSTM networks[J]. Energy Procedia, 2019,158:2922-2927.
[24]
中国气象数据网. 中国地面国际交换站气候资料日值数据集(V3.0). 2019[2020-12-30]. https://data.cma.cn.

Funding

Science and Technology Program of State Grid Tianjin Electric Power Company(KJ20-1-38)

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(7466 KB)

Accesses

Citation

Detail

Sections
Recommended

/