基于智能合约与可交易能源控制的风电消纳辅助决策技术

杨春祥, 谢丽荣, 田若鹏, 马寅, 崔剑, 韩冰, 伍朝显, 薛飞

电力建设 ›› 2020, Vol. 41 ›› Issue (10) : 133-141.

PDF(4059 KB)
PDF(4059 KB)
电力建设 ›› 2020, Vol. 41 ›› Issue (10) : 133-141. DOI: 10.12204/j.issn.1000-7229.2020.10.015
新能源发电

基于智能合约与可交易能源控制的风电消纳辅助决策技术

作者信息 +

Decision-Making Support Based on Smart Contracts and Transactive Energy Control in Wind Power Accommodation

Author information +
文章历史 +

摘要

随着风电装机容量的不断增长,风电消纳一直是电网运行的关键课题。基于近期学术界广泛关注的可交易能源(transactive energy,TE)系统的理念,文章提出了通过可交易能源控制(transactive energy control,TEC),以一系列交易合约作为控制手段实现风电消纳的技术框架。进一步将智能合约技术与可交易能源控制结合,由各交易方提出各自的交易逻辑,通过智能交易辅助决策形成一系列智能合约,从而实现风电消纳的控制目标。基于IEEE-30节点系统的算例验证了该控制方式的有效性。

Abstract

With the continuous growth of the installed capacity of wind power, the wind power accommodation becomes a key factor in power gird operation. According to the concept of the transactive energy systems which has been widely investigated in academic area, this paper proposes a framework of wind power utilization by using a series of trade contracts based on transactive energy control (TEC) method. Furthermore, the smart contract technology with TEC is jointly considered in this paper. The trade logics proposed by participants are formulated to a series of smart contracts through the assisted smart-trade decision-making method, and finally the control objective of wind power utilization is achieved. The IEEE 30-node system is used to verify the effectiveness of the proposed control method.

关键词

可交易能源(TE) / 智能合约 / 风电消纳 / 辅助决策

Key words

transactive energy(TE) / smart contract / wind power accommodation / assisted decision-making

引用本文

导出引用
杨春祥, 谢丽荣, 田若鹏, . 基于智能合约与可交易能源控制的风电消纳辅助决策技术[J]. 电力建设. 2020, 41(10): 133-141 https://doi.org/10.12204/j.issn.1000-7229.2020.10.015
Chunxiang YANG, Lirong XIE, Ruopeng TIAN, et al. Decision-Making Support Based on Smart Contracts and Transactive Energy Control in Wind Power Accommodation[J]. Electric Power Construction. 2020, 41(10): 133-141 https://doi.org/10.12204/j.issn.1000-7229.2020.10.015
中图分类号: TM73   

参考文献

[1]
王珂, 姚建国, 姚良忠 , 等. 电力柔性负荷调度研究综述[J]. 电力系统自动化, 2014,38(20):127-135.
摘要
电力高峰负荷持续增长以及间歇式能源的迅猛发展对电力系统调节能力提出新的重大挑战,柔性负荷调度作为发电调度的补充,已成为国内外关注的热点。从柔性负荷参与电网调度运行的视角综述了近年来国内外在柔性负荷可调度潜力、调度模式、响应行为建模和调度架构等方面的研究成果,着重对比分析了不同调度模式和调度架构的适用场景和优缺点,从柔性负荷综合响应建模、多时间尺度互动交易模式、多时间尺度协调调度、集中&分布式协调控制和互动效益评估5个方面探讨了柔性负荷调度领域需进一步研究的方向。并结合中国国情,提出了开展柔性负荷调度的建议设想。
WANG Ke, YAO Jianguo, YAO Liangzhong , et al. Survey of research on flexible loads scheduling technologies[J]. Automation of Electric Power Systems, 2014,38(20):127-135.
Integration of flexible and controllable load resources into power system scheduling and operation will enrich scheduling modes and enhance the system regulating capability, which has become a worldwide research hotspot. This paper is intended to make a review of recent investigations on the adjustable potential, scheduling modes, response behavior modeling and scheduling frameworks of flexible loads considering demand response (DR). Then detailed light is shed on the advantages and problems of these scheduling modes and scheduling frameworks. By proceeding from five aspects including modeling of flexible load’s comprehensive response, multi-time scales interactive trading modes, multi-time scales coordinated scheduling, coordination of centralized control and decentralized control, interactive benefit assessment, further research directions for flexible load scheduling are discussed. In addition, in view of China’s actual situation, suggestions for and assumptions about developing flexible load scheduling are proposed.
[2]
夏叶, 康重庆, 陈天恩 , 等. 电力用户参与风电消纳的日前市场模式[J]. 电力系统自动化, 2015,39(17):120-126.
XIA Ye, KANG Chongqing, CHEN Tianen , et al. Day-ahead market mode with power consumers participation in wind power accommodation[J]. Automation of Electric Power Systems, 2015,39(17):120-126.
[3]
王健, 鲁宗相, 乔颖 , 等. 高载能负荷提高风电就地消纳的需求响应模式研究[J]. 电网技术, 2017,41(7):2115-2123.
WANG Jian, LU Zongxiang, QIAO Ying , et al. Research on demand response mechanism of wind power local accommodation utilizing energy-intensive loads[J]. Power System Technology, 2017,41(7):2115-2123.
[4]
李亚龙, 刘文颖, 谢昶 , 等. 高载能负荷消纳受阻风电的供应链博弈决策方法探究[J]. 电力系统自动化, 2017,41(7):135-143.
LI Yalong, LIU Wenying, XIE Chang , et al. Supply chains game based decision-making method of congested wind power consumption for high-energy load[J]. Automation of Electric Power Systems, 2017,41(7):135-143.
[5]
陈润泽, 孙宏斌, 晋宏杨 . 高载能企业参与电力系统调度的模式与效益分析[J]. 电力系统自动化, 2015,39(17):168-175.
CHEN Runze, SUN Hongbin, JIN Hongyang . Pattern and benefit analysis of energy-intensive enterprises participating in power system dispatch[J]. Automation of Electric Power Systems, 2015,39(17):168-175.
[6]
崔强, 王秀丽, 王维洲 . 考虑风电消纳能力的高载能用户错峰峰谷电价研究[J]. 电网技术, 2015,39(4):946-952.
摘要
提出了一种通过需求侧管理激励负荷侧的高载能企业参与调峰,提高系统风电消纳能力的错峰峰谷分时电价机制。考虑了高载能企业转移负荷能力差的特点及其对峰谷分时电价时段连续划分的诉求,建立了相应的峰谷时段连续划分的错峰用电模型,并以提高系统谷时风电消纳能力为目标建立了错峰峰谷电价决策模型。通过解耦时段划分与电价优化,设计了2步优化方法求解峰谷时段与电价综合优化模型。错峰峰谷电价避免了传统多峰时段峰谷电价对用户的频繁扰动,更加适合高载能企业等大用户的生产特点。通过协调各用户的峰谷时段划分,减少峰时段时长,减轻了高载能企业电力成本压力,提高了参与调峰的积极性。
CUI Qiang, WANG Xiuli, WANG Weizhou . Stagger peak electricity price for heavy energy-consuming enterprises considering improvement of wind power accommodation[J]. Power System Technology, 2015,39(4):946-952.
A stagger peak-valley time-of-use (TOU) price mechanism, in which heavy energy-consuming enterprises are impelled to participate the peak load regulation under the demand side management (DSM), is proposed to improve the wind power accommodation capability of power grid. Considering the poor load transferring capability of heavy energy-consuming enterprises as well as their appeal to continually dividing the period of peak-valley TOU price, an stagger peak power consumption model with continuous division of peak-valley period is correspondingly established, and taking the improvement of wind power accommodation ability of power grid at valley period as the objective, a decision-making model for stagger peak-valley TOU price is built. Through decoupling time period division optimization and electricity price optimization, a two-step optimization method is designed to solve the synthetic optimization model of peak-valley period and electricity price. The frequent disturbance to power consumers due to the peak-valley price under traditional multi-peak load periods can be avoided by stagger peak-valley price mechanism, so it is more suitable for the production characteristics of big consumers such as heavy energy-consuming enterprises and so on. By means of coordinating the peak-load period division of various consumers and decreasing the length of peak-load period, the stress of heavy energy-consuming enterprises due to electric power cost can be relieved, thus the initiative of heavy energy-consuming enterprises to take part in the peak load regulation is enhanced.
[7]
华夏, 罗凡, 张建华 , 等. 促进新能源消纳的自备电厂发电权交易模式可行性探讨[J]. 电力系统自动化, 2016,40(12):200-206.
HUA Xia, LUO Fan, ZHANG Jianhua , et al. Feasibility analysis of trade mode promoting new energy consumption based on generation rights trade of self-generation power plants[J]. Automation of Electric Power Systems, 2016,40(12):200-206.
[8]
刘德伟, 黄越辉, 王伟胜 , 等. 考虑调峰和电网输送约束的省级系统风电消纳能力分析[J]. 电力系统自动化, 2011,35(22):77-81.
摘要
随着风电并网容量的增加,调峰和电网输送能力已成为电力系统消纳风电的瓶颈。为直观表达省级系统消纳风电的能力,指导风电发展规划以及未来调度运行工作,结合中国电力系统运行特性,研究了综合考虑调峰约束和电网输送能力约束的风电电量消纳预测方法,并根据中国北方风电富集省份现有的电网条件、电源结构、实际运行方式等信息,对多种场景下两相邻省份水平年风电电量消纳情况进行了详细预测分析,最后根据电力系统实际运行情况,提出了提高风电消纳能力的措施和建议。
LIU Dewei, HUANG Yuehui, WANG Weisheng , et al. Analysis on provincial system available capability of accommodating wind power considering peak load dispatch and transmission constraints[J]. Automation of Electric Power Systems, 2011,35(22):77-81.
With the increasing of wind power installed capacity, peak load regulation and transmission capacity have become main restrictions for accommodation of wind power. In order to provide an intuitive demonstration on the accommodation of wind power and guidance for the planning and dispatching of wind power, this paper presents a method for predicting the accommodation of wind energy considering peak load and transmission regulation. Based on the present condition of the gird, construction of power source and the actual operational data of the northern provinces of China with rich wind power resource, this paper analyzes and predicts two provinces available capability of wind energy in the target year under different scenarios. At last, this paper gives advices to improve the capability to connect wind power.
[9]
张振宇, 王文倬, 王智伟 , 等. 跨区直流外送模式对新能源消纳的影响分析及应用[J]. 电力系统自动化, 2019,43(11):174-180.
ZHANG Zhenyu, WANG Wenzhuo, WANG Zhiwei , et al. Impact analysis and application of cross-region HVDC delivery mode in renewable energy accommodation[J]. Automation of Electric Power Systems, 2019,43(11):174-180.
[10]
王颖, 周刚, 韩红卫 , 等. 计及风电最优置信度的机组组合优化方法[J]. 电网技术, 2017,41(3):808-815.
WANG Ying, ZHOU Gang, HAN Hongwei , et al. Unit commitment considering optimal confidence of wind power uncertainty[J]. Power System Technology, 2017,41(3):808-815.
[11]
陈启鑫, 王克道, 陈思捷 , 等. 面向分布式主体的可交易能源系统: 体系架构、机制设计与关键技术[J]. 电力系统自动化, 2018,42(3):1-7, 31.
CHEN Qixin, WANG Kedao, CHEN Sijie , et al. Transactive energy system for distributed agents: Architecture, mechanism design and key technologies[J]. Automation of Electric Power Systems, 2018,42(3):1-7, 31.
[12]
KOK K, WIDERGREN S . A society of devices: Integrating intelligent distributed resources with transactive energy[J]. IEEE Power and Energy Magazine, 2016,14(3):34-45.
[13]
MELTON RONALD B . Gridwise transactive energy framework (DRAFT version)[M/OL]. (2013-11-06)[2020-03-01]. Richland, WA:Pacific Northwest National Laboratory (PNNL), 2013: 1-23.
[14]
CHEN S J, LIU C C . From demand response to transactive energy: State of the art[J]. Journal of Modern Power Systems and Clean Energy, 2017,5(1):10-19.
[15]
LIU W J, ZHAN J P, CHUNG C Y . A novel transactive energy control mechanism for collaborative networked microgrids[J]. IEEE Transactions on Power Systems, 2019,34(3):2048-2060.
[16]
HU J J, YANG G Y, KOK K , et al. Transactive control: A framework for operating power systems characterized by high penetration of distributed energy resources[J]. Journal of Modern Power Systems and Clean Energy, 2017,5(3):451-464.
[17]
龚钢军, 王慧娟, 张桐 , 等. 基于区块链的电力现货交易市场研究[J]. 中国电机工程学报, 2018,38(23):6955-6966.
GONG Gangjun, WANG Huijuan, ZHANG Tong , et al. Research on electricity market about spot trading based on blockchain[J]. Proceedings of the CSEE, 2018,38(23):6955-6966.
[18]
平健, 陈思捷, 张宁 , 等. 基于智能合约的配电网去中心化交易机制[J]. 中国电机工程学报, 2017,37(13):3682-3690.
PING Jian, CHEN Sijie, ZHANG Ning , et al. Decentralized transactive mechanism in distribution network based on smart contract[J]. Proceedings of the CSEE, 2017,37(13):3682-3690.
[19]
高春成, 翟莹莹, 王春艳 , 等. 售电侧放开的电力交易中的智能合约应用[J]. 控制工程, 2018,25(12):2275-2278.
GAO Chuncheng, ZHAI Yingying, WANG Chunyan , et al. Power trade after power sales market liberalization based on smart contract[J]. Control Engineering of China, 2018,25(12):2275-2278.
[20]
欧阳丽炜, 王帅, 袁勇 , 等. 智能合约:架构及进展[J]. 自动化学报, 2019,45(3):445-457.
OUYANG Liwei, WANG Shuai, YUAN Yong , et al. Smart contracts: Architecture and research progresses[J]. Acta Automatica Sinica, 2019,45(3):445-457.
[21]
贺海武, 延安, 陈泽华 . 基于区块链的智能合约技术与应用综述[J]. 计算机研究与发展, 2018,55(11):2452-2466.
HE Haiwu, YAN An, CHEN Zehua . Survey of smart contract technology and application based on blockchain[J]. Journal of Computer Research and Development, 2018,55(11):2452-2466.
[22]
Illinois Center for a Smarter Electric Grid (ICSEG). IEEE 30-bus system [EB/OL].[2020-04-07]. https://icseg.iti.illinois/edu/ieee-30-bus-system/.
[23]
NOAA National Centers for Environmental Information. Global surface hourly [Zhangye, China] [EB/OL].[2020-04-07]. https://www.ncdc.noaa.gov/sotc/global/201907.

基金

国网甘肃省电力公司科技项目“智能交易辅助决策研究”

编辑: 景贺峰

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(4059 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/