PDF(5586 KB)
PDF(5586 KB)
PDF(5586 KB)
LCL型并网逆变器临界无源阻尼参数设计
Design of Critical Passive Damping Parameters for LCL-Type Grid-Connected Inverter
LCL滤波器因其良好的滤波性能被广泛应用于并网逆变器系统中。然而,LCL滤波器的固有谐振特性以及数字控制延时会严重危及系统稳定性。为提高系统鲁棒性,工程上通常采用无源阻尼方法以抑制滤波器谐振。由于滤波器谐振问题受多种因素影响,阻尼电阻的选取标准通常是模糊的。为准确、高效地设计阻尼电阻,文章结合阻尼电阻与滤波电容串联和与滤波电容并联两种典型无源阻尼方法,推导分析了“临界阻尼”指标。当系统阻尼大于临界阻尼时,LCL滤波器幅频特性曲线上的谐振峰被完全抑制,同时以最少的无源阻尼损耗为代价,充分保证了基于LCL滤波器的并网逆变器系统稳定性。此外,文章在PLECS软件中进行三相并网逆变器系统仿真,仿真结果验证了理论分析的有效性和正确性。
LCL filter is widely used in grid-connected inverter system for its advanced filtering performance. However, the inherent resonance characteristic of LCL filter and digital control delay will seriously endanger system stability. To increase the system robustness, passive damping method is usually applied to suppress the filter resonance in engineering. Since the filter resonance problem is affected by many factors, the selection standard of damping resistor is unclear. In order to design the damping resistor accurately and efficiently, this paper introduces the index of“critical damping factor”and analyzes two typical passive damping methods: damping resistor in series with filter capacitor or in parallel with filter capacitor. When system damping factor is larger than the critical damping factor, the resonant peak of the amplitude frequency characteristic curve can be completely suppressed and the stability of grid-connected inverter system is fully guaranteed with the minimum cost of passive damping losses. Moreover, the simulation of three-phase grid-connected inverter is carried out in PLECS and the simulation results verify the effectiveness and correctness of the theoretical analysis.
LCL型并网逆变器 / 无源阻尼 / 临界阻尼系数 / 控制时间延时
LCL-type grid-connected inverter / passive damping / critical damping factor / control time delay
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
鲍陈磊, 阮新波, 王学华, 等. 基于PI调节器和电容电流反馈有源阻尼的LCL型并网逆变器闭环参数设计[J]. 中国电机工程学报, 2012, 32(25): 133-142.
|
| [5] |
梁毅, 谢运祥, 关远鹏. LCL并网逆变器双闭环控制策略及其参数设计[J]. 电工电能新技术, 2019, 39(4): 30-38.
|
| [6] |
|
| [7] |
|
| [8] |
姜玉霞, 田艳军, 李永刚. 功率双向流动时背靠背变流器稳定性分析[J]. 电力建设, 2021, 42(7): 73-82.
|
| [9] |
朱坤龙, 孙鹏菊, 王林, 等. 弱电网下LCL型并网逆变器的高鲁棒性加权平均电流控制策略[J]. 中国电机工程学报, 2020, 40(11): 3592-3602.
|
| [10] |
|
| [11] |
|
| [12] |
刘建锋, 李美玉, 余光正, 等. 考虑VSC系统谐波稳定条件下的LCL滤波器参数优化设计方法[J]. 电力系统保护与控制, 2020, 48(13): 80-90.
|
| [13] |
许德志, 汪飞, 阮毅. LCL、LLCL和LLCCL滤波器无源阻尼分析[J]. 中国电机工程学报, 2015, 35(18): 4725-4735.
|
| [14] |
刘宝泉, 郭华, 朱一昕, 等. 三相变流器无源阻尼型LCL滤波器的分析与设计[J]. 电工技术学报, 2017, 32(2): 195-205.
|
| [15] |
|
| [16] |
|
| [17] |
章小卫, 周京华, 王启行, 等. 单相LCL型并网逆变器无阻尼控制策略[J]. 电力建设, 2018, 39(4): 106-112.
|
| [18] |
|
| [19] |
李飞, 张兴, 朱虹, 等. 一种LCLLC滤波器及其参数设计[J]. 中国电机工程学报, 2015, 35(8): 2009-2017.
|
AI小编
/
| 〈 |
|
〉 |