PDF(5769 KB)
PDF(5769 KB)
PDF(5769 KB)
基于中枢解耦与演化博弈的多农业园区综合能源系统优化运行
Optimal Operation Strategy Based on Central Decoupling and Evolutionary Game for Multiple Agricultural Integrated Energy Systems
农业园区用能需求集中且源荷多元化,当多个农业园区缺少合理运行方法且分布式接入农网,势必会对农业园区效益与农网安全产生不利影响。针对上述问题,提出一种基于中枢解耦与演化博弈的多农业园区综合能源系统(agricultural integrated energy system,AIES)优化运行方法。首先,构建含电-气-热的AIES耦合供能结构和农业园区需求侧响应模型;然后,利用能量中枢解耦方法将农网与园区解耦,建立农网层与多园区层的博弈模型,农网层考虑电压安全和用能成本,园区层考虑经济效益和农作物供能满意度;再次,提出基于多目标粒子群优化的演化博弈算法,解决了多园区、多目标复杂博弈下的强理性、难以达到Nash均衡的问题;最后,通过算例仿真验证了所提方法的可行性和有效性,实现了多农业园区综合能源系统的优化运行。
There are concentrated energy demands and a variety of sources and loads in agricultural parks. When the multiple agricultural parks are dispersedly accessed to rural distribution network and lack of reasonable operation methods, it is bound to have a negative impact on the safety of rural distribution network and the benefit of agricultural parks. In view of the above problems, an optimal operation method based on central decoupling and evolutionary game for multiple agricultural integrated energy system (AIES) is proposed. Firstly, the AIES architecture with electricity-gas-heat and model of the demand response are constructed. Secondly, the rural distribution network is decoupled from the AIES by central decoupling. A two-layer game model including rural network layer and multi-park layer is established. The voltage safety margin and the energy cost are considered in the rural distribution network layer. The satisfaction of crop energy supply and economic benefit are considered in the agricultural park layer. Thirdly, the evolutionary game based on multi-objective particle swarm optimization is proposed. The problem of strong rationality and difficulty in achieving Nash equilibrium in a complex game with multiple parks and goals are solved. Finally, the feasibility and effectiveness of the method are verified by simulation examples. The optimal operation of multiple AIES is achieved.
中枢解耦 / 演化博弈 / 农网 / 农业园区综合能源系统(AIES) / 粒子群算法
central decoupling / evolutionary game / rural distribution network / agricultural integrated energy system (AIES) / particle swarm optimization
| [1] |
|
| [2] |
|
| [3] |
张新, 杨建华, 王维洲, 等. 面向农村微能网的评价指标构建及应用[J]. 农业工程学报, 2020, 36(6):196-205.
|
| [4] |
付学谦, 周亚中, 孙宏斌, 等. 园区农业能源互联网在线安全分析:评述与展望[J]. 中国电机工程学报, 2020, 40(17):5404-5412.
|
| [5] |
周亚中, 付学谦, 杨菲菲, 等. 考虑空间耦合的农业园区能源互联网静态安全分析[J/OL]. 电网技术. (2021-05-26)[2021-07-01]. https://doi.org/10.13335/j.1000-3673.pst.2021.0445.
|
| [6] |
陈正, 杨建华, 靳开元, 等. 基于能源区块链的设施农业负荷时移与光伏就地消纳控制策略[J]. 电力自动化设备, 2021, 41(2):47-55.
|
| [7] |
刘广, 白晓清, 刁天一. 考虑气电网络架构的沼-风-光综合能源微网优化调度[J]. 电网与清洁能源, 2020, 36(12):49-58.
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
崔杨, 姜涛, 仲悟之, 等. 电动汽车与热泵促进风电消纳的区域综合能源系统经济调度方法[J]. 电力自动化设备, 2021, 41(2):1-7.
|
| [12] |
张娜, 王欢, 宋坤, 等. 基于多能源需求响应的综合能源系统动态优化控制研究[J/OL]. 电测与仪表. (2020-12-14)[2021-07-01]. https://kns.cnki.net/kcms/detail/23.1202.TH.20201214.1714.002.html.
|
| [13] |
林佳兴, 孙亮, 李佳雯, 等. 计及电热综合需求响应的综合能源系统优化调度[J/OL]. 电测与仪表. (2020-11-26)[2021-07-01]. https://kns.cnki.net/kcms/detail/23.1202.TH.20201125.1541.017.html.
|
| [14] |
丁煜蓉, 陈红坤, 吴军, 等. 计及综合能效的电-气-热综合能源系统多目标优化调度[J]. 电力系统自动化, 2021, 45(2):64-73.
|
| [15] |
魏春, 徐向志, 王国烽, 等. 基于非合作博弈的多能量枢纽优化运行方法[J]. 电力自动化设备, 2020, 40(11):48-53.
|
| [16] |
徐青山, 李淋, 盛业宏, 等. 冷热电联供型多微网主动配电系统日前优化经济调度[J]. 电网技术, 2018, 42(6):1726-1735.
|
| [17] |
王甜婧, 许阔, 朱永强. 主动配电网的源-网-荷多层博弈经济调度策略[J]. 电力系统保护与控制, 2018, 46(4):10-19.
|
| [18] |
彭春华, 钱锟, 闫俊丽. 新能源并网环境下发电侧微分演化博弈竞价策略[J]. 电网技术, 2019, 43(6):2002-2010.
|
| [19] |
黄南天, 包佳瑞琦, 蔡国伟, 等. 多主体联合投资微电网源-储多策略有限理性决策演化博弈容量规划[J]. 中国电机工程学报, 2020, 40(4):1212-1225, 1412.
|
| [20] |
程乐峰, 余涛. 开放电力市场环境下多群体非对称演化博弈的均衡稳定性典型场景分析[J]. 中国电机工程学报, 2018, 38(19):5687-5703,5926.
|
| [21] |
黄悦华, 王艺洁, 杨楠, 等. 基于演化博弈的用户综合用能行为决策方法研究[J]. 电力系统保护与控制, 2020, 48(23):21-29.
|
| [22] |
王行行, 赵晋泉, 王珂, 等. 考虑用户满意度和配网安全的电动汽车多目标双层充电优化[J]. 电网技术, 2017, 41(7):2165-2172.
|
| [23] |
张新, 张漫, 王维洲, 等. 基于改进杂交粒子群算法的农村微能网多能流优化调度[J]. 农业工程学报, 2017, 33(11):157-164.
|
AI小编
/
| 〈 |
|
〉 |