PDF(7910 KB)
PDF(7910 KB)
PDF(7910 KB)
零碳园区电-氢混合储能系统多目标优化配置
Multi-objective Optimal Configuration of Electricity-Hydrogen Hybrid Energy Storage System in Zero-Carbon Park
随着氢气生产和储存技术的快速发展,开发氢气储能系统(hydrogen energy storage systems, HESSs)将给能源和电力系统结构带来根本性变化。HESSs和电池储能系统(battery energy storage systems, BESSs)相结合进行协调优化可以解决多种能源供需之间的不平衡,并提高能源效率。为确保BESSs和HESSs规划的有效性,以最小全生命周期成本(life cycle cost, LCC)、系统网损、联络线交换功率偏差、负荷波动以及电压波动为目标,采用带精英策略的非支配排序遗传算法(non-dominated sorting genetic algorithm-II, NSGA2)求解储能系统(energy storage systems, ESSs)选址定容规划方案的Pareto非支配解集。并利用基于熵权法(entropy weight method, EWM)的灰靶决策在Pareto非支配解集中选取最佳折中解。另外,通过模糊核C-均值(fuzzy kernel C-means, FKCM)聚类算法获取源荷典型运行场景集,并基于扩展的IEEE-33节点系统进行仿真分析。仿真结果表明:NSGA2算法不仅实现了电-氢混合储能系统LCC最小,且其电压质量、功率稳定性、网损与负荷波动也显著优于对比算法。
With the rapid development of hydrogen production and storage technology, the development of hydrogen energy storage systems (HESSs) will bring fundamental changes to energy and power system structure. The coordinated optimization of HESS and battery energy storage system (BESS) can solve the imbalance between supply and demand of various energy sources and improve energy efficiency. In order to ensure the effectiveness of BESS and HESS planning, minimum life cycle cost (LCC), system network loss, switching power deviation, load fluctuation, and voltage fluctuation are chosen as the fitness function in this paper. Meanwhile, a non-dominated sorting genetic algorithm-II (NSGA2) with elite strategy is used to solve energy storage system (ESS) Pareto non-dominated solution set of site-constant volume planning scheme. The grey target decision based on entropy weight method (EWM) is used to select the best compromise solution in Pareto non-dominated solution set. Additionally, typical operation scenarios of source load are obtained by fuzzy kernel C-means (FKCM) clustering algorithm, and the simulation analysis is carried out on the basis of the extended IEEE 33-node system. Simulation results show that NSGA2 algorithm not only achieves the minimum LCC of the electricity-hydrogen hybrid energy storage system, but also improves voltage quality, power stability, network loss and load fluctuation compared to that of other algorithms.
“零碳”园区 / 电池储能系统(BESSs) / 氢气储能系统(HESSs) / 模糊核C-均值 / 带精英策略的非支配排序遗传算法(NSGA2)
zero-carbon park / battery energy storage systems (BESSs) / hydrogen energy storage systems (HESSs) / fuzzy kernel C-means (FKCM) / non-dominated sorting genetic algorithm-II (NSGA2)
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
邬炜, 赵腾, 李隽, 等. 考虑碳预算与碳循环的能源规划方法及建议[J]. 电力建设, 2021, 42(10): 1-8.
|
| [6] |
张颖梓, 李华强, 李旭翔, 等. 基于用户需求行为的综合能源服务产品定价策略研究[J]. 电力系统保护与控制, 2021, 49(17): 121-129.
|
| [7] |
|
| [8] |
陈豪, 张伟华, 石磊, 等. 国内外用户侧光储系统发展应用研究[J]. 发电技术, 2020, 41(2):110-117.
|
| [9] |
徐国栋, 程浩忠, 马紫峰, 等. 用于缓解电网调峰压力的储能系统规划方法综述[J]. 电力自动化设备, 2017, 37(8): 3-11.
|
| [10] |
|
| [11] |
|
| [12] |
颜志敏, 王承民, 郑健, 等. 配电网中蓄电池储能系统的价值评估模型[J]. 电力自动化设备, 2013, 33(2): 57-61.
|
| [13] |
苏海锋, 胡梦锦, 梁志瑞. 基于时序特性含储能装置的分布式电源规划[J]. 电力自动化设备, 2016, 36(6): 56-63.
|
| [14] |
高松, 黄河, 李妍, 等. 适应随机序贯决策的分布式储能优化规划方法[J/OL]. 高电压技术, 2022: 1-8. https://doi.org/10.13336/j.1003-6520.hve.20211653.
|
| [15] |
|
| [16] |
杨火明, 徐潇源, 严正. 考虑配电网韧性的储能系统选址定容优化方法[J]. 电力建设, 2018, 39(1): 30-39.
|
| [17] |
章美丹, 宋晓喆, 辛焕海, 等. 计及网损的配电网电池储能站优化运行策略[J]. 电网技术, 2013, 37(8): 2123-2128.
|
| [18] |
孟庆强, 李湘旗, 禹海峰, 等. 考虑源-荷不确定性的储能电站优化规划[J]. 太阳能学报, 2021, 42(10): 415-423.
|
| [19] |
吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411.
|
| [20] |
付林, 董力通, 张勇. 计及电压质量的配电网储能系统优化配置研究[J]. 电气自动化, 2022, 44(1): 24-26, 30.
|
| [21] |
吴乔, 罗键, 林金有. 基于集对分析与NSGA-Ⅱ的生产作业多目标优化[J]. 计算机应用研究, 2014, 31(5): 1414-1417.
|
| [22] |
|
| [23] |
|
| [24] |
刘嘉蔚, 李奇, 陈维荣, 等. 基于多分类相关向量机和模糊C均值聚类的有轨电车用燃料电池系统故障诊断方法[J]. 中国电机工程学报, 2018, 38(20): 6045-6052.
|
| [25] |
杨博, 俞磊, 王俊婷, 等. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688.
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
胡旺,
|
AI小编
/
| 〈 |
|
〉 |