考虑极端场景的输电-通信网络协同鲁棒扩展规划方法

张艺伟, 刘文霞, 张帅, 万海洋, 黄少锋

电力建设 ›› 2022, Vol. 43 ›› Issue (10) : 121-135.

PDF(6883 KB)
PDF(6883 KB)
电力建设 ›› 2022, Vol. 43 ›› Issue (10) : 121-135. DOI: 10.12204/j.issn.1000-7229.2022.10.012
智能电网

考虑极端场景的输电-通信网络协同鲁棒扩展规划方法

作者信息 +

Joint Robust Expansion Planning of Transmission Network and Communication Network Considering Extreme Scenarios

Author information +
文章历史 +

摘要

为了在满足经济性前提下,尽可能降低极端场景下电力和通信网络故障耦合引起的大面积停电风险,考虑双网结构融合和功能耦合特征,提出了信息物理协同双层(主层、子层)鲁棒扩展规划模型。首先,以投资经济性和极端场景下失负荷损失成本最小为目标,建立双网线路和通信业务路由协同优化的主层模型;其次,在子层模型中,计及线路结构耦合引起的共因失效模式,构建了电力/通信线路多重故障集,并考虑通信失效对电力系统应急调度的影响,基于max-min准则建立最恶劣极端场景最小失负荷损失成本计算模型;随后,采用列和约束生成算法实现两层模型解耦求解;最后,基于IEEE 14 节点信息物理系统进行仿真分析,结果表明,提出的协同规划模型能以经济合理的投资优化双网结构,降低通信系统故障级联影响,提高耦合系统面对极端场景的抵抗力。

Abstract

In order to meet the economic premise and minimize the risk of large area outages caused by the coupling of failures in power and communication networks in extreme scenarios, this paper proposes a robust extended planning model with two layers (main layer and sub-layer) of cyber-physical cooperation, taking into account the structural convergence and functional coupling characteristics of the dual network. Firstly, the main-layer model for cooperative optimization of dual-network line and communication service routing is established with the objectives of economy and minimum loss of load under extreme scenarios; in the sub-layer model, the multiple fault sets of power/communication lines are constructed taking into account the common cause failure modes caused by line structure coupling, and the impact of communication failure on the emergency dispatch of power system is considered, and the calculation model of minimum loss of load under the worst extreme scenarios is established based on the max-min criterion. Then, the column and constraint generation algorithm is used to decouple the two-layer model. Finally, simulation analysis is conducted on the basis of IEEE 14-node information physical system. The results show that the collaborative planning model proposed in this paper can optimize the dual-network structure with economical and reasonable investment, reduce the impact of fault cascade in communication system, and improve the resistance of the coupled system to face extreme events.

关键词

电力信息物理系统 / 极端场景 / 协同规划 / 鲁棒优化

Key words

electric cyber-physical system / extreme scenarios / joint expansion planning / robust optimization

引用本文

导出引用
张艺伟, 刘文霞, 张帅, . 考虑极端场景的输电-通信网络协同鲁棒扩展规划方法[J]. 电力建设. 2022, 43(10): 121-135 https://doi.org/10.12204/j.issn.1000-7229.2022.10.012
Yiwei ZHANG, Wenxia LIU, Shuai ZHANG, et al. Joint Robust Expansion Planning of Transmission Network and Communication Network Considering Extreme Scenarios[J]. Electric Power Construction. 2022, 43(10): 121-135 https://doi.org/10.12204/j.issn.1000-7229.2022.10.012
中图分类号: TM73   

参考文献

[1]
张艺伟, 刘文霞, 刘耕铭, 等. 考虑拓扑相关和双重耦合的电力信息物理系统建模与脆弱性分析[J]. 中国电机工程学报, 2021, 41(16): 5486-5500.
ZHANG Yiwei, LIU Wenxia, LIU Gengming, et al. Modeling and vulnerability analysis of electric cyber physical system considering topological correlation and double coupling[J]. Proceedings of the CSEE, 2021, 41(16): 5486-5500.
[2]
LI Y, ZHANG S Q, XU T Q, et al. Evaluation of critical node groups in cyber-physical power systems based on pinning control theory[J]. IEEE Access, 10: 48936-48947.
[3]
计丽妍, 李存斌, 贾雪枫, 等. 多证据融合下电力信息物理系统风险评估研究[J]. 智慧电力, 2021, 49(10): 23-29.
JI Liyan, LI Cunbin, JIA Xuefeng, et al. Risk assessment of cyber-physical power system based on multi-evidence fusion[J]. Smart Power, 2021, 49(10): 23-29.
[4]
XIN S J, GUO Q L, SUN H B, et al. Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems[J]. IEEE Transactions on Smart Grid, 2017, 6(5): 2375-85.
[5]
BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291): 1025-1028.
[6]
HU J W, XU X Y, MA H Y, et al. Distributionally robust co-optimization of transmission network expansion planning and penetration level of renewable generation[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(3): 577-587.
[7]
LIU X N, HOU K, JIA H J, et al. A planning-oriented resilience assessment framework for transmission systems under typhoon disasters[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5431-5441.
[8]
ZHANG H B, MA S T, DING T, et al. Multi-stage multi-zone defender-attacker-defender model for optimal resilience strategy with distribution line hardening and energy storage system deployment[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1194-1205.
[9]
SHI Q X, LI F X, KURUGANTI T, et al. Resilience-oriented DG siting and sizing considering stochastic scenario reduction[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3715-3727.
[10]
YIN S F, WANG J H. Generation and transmission expansion planning towards a 100% renewable future[J]. IEEE Transactions on Power Systems, 2022, 37(4): 3274-3285.
[11]
SHAO C C, SHAHIDEHPOUR M, WANG X F, et al. Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4418-4429.
[12]
郭铭群, 赵鹏飞, 孙珂, 等. N-K重故障下输储协同规划模型及算法[J]. 电网技术, 2020, 44(11): 4218-4226.
GUO Mingqun, ZHAO Pengfei, SUN Ke, et al. N-K contingencies considered joint planning of energy storage and transmission expansion problem: Model and algorithm[J]. Power System Technology, 2020, 44(11): 4218-4226.
[13]
杨挺, 黄志勇, 盆海波, 等. 基于拓扑势均衡的配电网信息物理系统规划算法[J]. 电网技术, 2017, 41(12): 3988-3995.
YANG Ting, HUANG Zhiyong, PEN Haibo, et al. Planning algorithm of cyber physical system for distribution networks based on topological potential equilibrium[J]. Power System Technology, 2017, 41(12): 3988-3995.
[14]
崔力民, 孙静月, 李珊君, 等. 一种基于熵的电力通信网络业务资源均匀分配算法[J]. 电网技术, 2017, 41(9): 3066-3073.
CUI Limin, SUN Jingyue, LI Shanjun, et al. An algorithm for business resource uniform distribution in power communication network based on entropy[J]. Power System Technology, 2017, 41(9): 3066-3073.
[15]
李彬, 卢超, 景栋盛, 等. 负载与风险联合均衡的电力通信网路由优化算法[J]. 中国电机工程学报, 2019, 39(9): 2713-2723.
LI Bin, LU Chao, JING Dongsheng, et al. An optimized routing algorithm with load and risk joint balance in electric communication network[J]. Proceedings of the CSEE, 2019, 39(9): 2713-2723.
[16]
陈保瑞, 刘天琪, 何川, 等. 考虑需求响应的源网荷协调分布鲁棒长期扩展规划[J]. 中国电机工程学报, 2021(20):6886-6899.
CHEN Baorui, LIU Tianqi, HE Chuan, et al. Distributionally robust coordinated expansion planning for generation and transmission systems with demand response[J]. Proceedings of the CSEE, 2021(20):6886-6899.
[17]
林伟伟, 陆俊, 李疆生, 等. 电力系统保护OTN通信网路由均衡规划方法[J]. 电力系统自动化, 2020, 44(17): 161-167.
LIN Weiwei, LU Jun, LI Jiangsheng, et al. Routing equilibrium planning method of OTN communication network for power system protection[J]. Automation of Electric Power Systems, 2020, 44(17): 161-167.
[18]
TI B Z, LI G Y, ZHOU M, et al. Resilience assessment and improvement for cyber-physical power systems under typhoon disasters[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 783-794.
[19]
HUANG G, WANG J H, CHEN C, et al. Cyber-constrained optimal power flow model for smart grid resilience enhancement[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5547-5555.
[20]
王渝红, 胡胜杰, 宋雨妍, 等. 基于强化学习理论的输电网扩展规划方法[J]. 电网技术, 2021, 45(7): 2829-2838.
WANG Yuhong, HU Shengjie, SONG Yuyan, et al. Transmission expansion planning based on reinforcement learning[J]. Power System Technology, 2021, 45(7): 2829-2838.
[21]
王晗, 徐潇源, 严正. 考虑柔性负荷的多目标安全约束机组组合优化模型及求解[J]. 电网技术, 2017, 41(6): 1904-1912.
WANG Han, XU Xiaoyuan, YAN Zheng. Multi-objective optimization of security constrained unit commitment model and solution considering flexible load[J]. Power System Technology, 2017, 41(6): 1904-1912.
[22]
张海波, 马伸铜, 程鑫, 等. 保证重要负荷不间断供电的配电网储能规划方法[J]. 电网技术, 2021, 45(1): 259-268.
ZHANG Haibo, MA Shentong, CHENG Xin, et al. Distribution network energy storage planning ensuring uninterrupted power supply for critical loads[J]. Power System Technology, 2021, 45(1): 259-268.

基金

国家重大科技专项(2020YFC0827001)

编辑: 白婉欣
PDF(6883 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/