• CSCD核心库收录期刊
  • 中文核心期刊
  • 中国科技核心期刊

电力建设 ›› 2024, Vol. 45 ›› Issue (3): 16-26.doi: 10.12204/j.issn.1000-7229.2024.03.002

• 综合能源系统能量品质理论与低碳高效应用·栏目主持 王丹副教授、陈奇成教授、胡枭副教授、喻洁副教授· • 上一篇    下一篇

考虑电-热等效虚拟储能的综合能源系统低碳经济调度

张志一, 窦震海(), 于润泽, 胡亚春, 陈佳佳, 尹文良   

  1. 山东理工大学电气与电子工程学院,山东省淄博市 255000
  • 收稿日期:2023-06-12 出版日期:2024-03-01 发布日期:2024-02-28
  • 通讯作者: 窦震海(1970),男,博士,副教授,主要研究方向为电力系统负荷预测和电力系统优化调度,E-mail:douzhenhai@sdut.edu.cn
  • 作者简介:张志一(1998),男,硕士研究生,主要研究方向为微电网优化调度;
    于润泽(1998),男,硕士研究生,主要研究方向为电力负荷预测;
    胡亚春(1998),男,硕士研究生,主要研究方向为储能设备优化;
    陈佳佳(1987),男,博士,副教授,主要研究方向为电网弹性和灵活性、电力需求侧管理以及电价优化和控制;
    尹文良(1991),男,博士,副教授,主要研究方向为风力发电技术与设备、储能以及电气设备的控制与优化。
  • 基金资助:
    国家自然科学基金项目(52005306);山东省自然科学基金项目(ZR2020QE220)

Low-carbon Economic Dispatch of Integrated Energy System Considering Electric-thermal Equivalent Virtual Energy Storage

ZHANG Zhiyi, DOU Zhenhai(), YU Runze, HU Yachun, CHEN Jiajia, YIN Wenliang   

  1. College of Electrical and Electronic Engineering,Shandong University of Technology, Zibo 255000, Shandong Province, China
  • Received:2023-06-12 Published:2024-03-01 Online:2024-02-28
  • Supported by:
    National Natural Science Foundation of China(52005306);Natural Science Foundation of Shandong Province, China(ZR2020QE220)

摘要:

针对传统的实体储能设备因建设成本较高而难以大规模应用的问题,提出了考虑电-热等效虚拟储能的综合能源系统低碳经济调度模型。首先,通过采用住宅用户热舒适度这一指标调节热负荷并与热电联产(combined heat and power, CHP)机组相结合,形成热力等效虚拟储能。其次,将碳捕集设备视为可调节负荷并与需求侧响应一起作为电力等效虚拟储能参与削峰填谷。此外,在负荷低谷时碳捕集设备以最大功率运行可以有效降低CHP机组的CO2排放量。最后,以购能成本、弃风成本、CO2封存成本、碳交易成本、需求响应补偿成本之和最小为目标建立模型。算例仿真结果表明同时考虑热力等效虚拟储能、需求响应与碳捕集设备协同作用,提高了综合能源系统整体的风能渗透率与经济性,同时降低了CO2的排放量。

关键词: 综合能源系统, 虚拟储能, 热电联产(CHP), 需求响应, 碳交易

Abstract:

As broad application of traditional physical energy storage equipment is difficult due to high construction costs, the low-carbon economic dispatch model of an integrated energy system considering electric-thermal equivalent virtual energy storage is proposed in this paper. First, the heat load is adjusted using the thermal comfort index of residential users and combined with combined heat and power (CHP) units to form a thermally equivalent virtual energy storage. Second, the carbon capture equipment is regarded as an adjustable load, and participates in peak shaving and valley filling as an equivalent virtual energy storage with a demand-side response. In addition, the carbon capture equipment operates at the maximum power during periods of low load, which can effectively reduce the CO2 emissions of the CHP units. Finally, a model is established with the goal of minimizing the sum of energy purchase costs, wind curtailment costs, CO2 sequestration costs, carbon transaction costs, and demand response compensation costs. The simulation results of the example show that, considering the synergy of thermal equivalent virtual energy storage, demand response, and carbon capture equipment simultaneously; the overall wind energy penetration rate of the system is improved, carbon emissions are reduced, and the economy of integrated energy system is improved.

Key words: integrated energy system, virtual energy storage, combined heat and power(CHP), demand response, carbon transactions

中图分类号: