现代智慧配电网发展方向与关键技术框架研究

娄奇鹤, 李彦斌, 王登政, 肖智宏, 韩柳, 高星乐

电力建设 ›› 2025, Vol. 46 ›› Issue (5) : 69-83.

PDF(3414 KB)
PDF(3414 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (5) : 69-83. DOI: 10.12204/j.issn.1000-7229.2025.05.007
智能电网

现代智慧配电网发展方向与关键技术框架研究

作者信息 +

Framework for the Development Direction and Key Technologies of Modern Smart Distribution Networks

Author information +
文章历史 +

摘要

【目的】 随着“双碳”目标的驱动与新型能源体系建设的深化,以分布式电源、电动汽车和可控用户侧资源为代表的新型源荷发展迅速,占比达到新高度。新型源荷功率的波动性和随机性对配电网的安全运行和灵活调控提出了新的挑战,迫切要求配电网向现代升级、向智慧升级。【方法】 针对现代智慧配电网发展面临的形势要求,分析了现代智慧配电网具备的内涵特征,阐述了配电网的智慧化需求及发展重点。针对配电网建设的多样性和差异化特点,结合微电网协调发展、充电设施高效承载、新型储能高效利用、城乡配电网升级、源网荷储高效协同五个典型场景,对传统配电网向现代智慧升级的关键技术进行了探讨。围绕现代智慧配电网的内涵特征和发展重点,对未来配电网的技术发展方向和建设重点进行了展望。【结果】配电网亟需通过高质量发展建设,升级为“现代智慧配电网”,全面提高配电网安全供电保障能力、清洁能源消纳能力、多元负荷承载能力、优化配置资源能力。【结论】现代智慧配电网作为新型电力系统的重要组成部分,具备新型电力系统全部要素,将持续承接新要素的广泛接入、承载新业态新模式的蓬勃发展。

Abstract

[Objective] Driven by the “dual carbon” goal and the ongoing development of new energy systems, renewable sources and novel loads—such as distributed generation, electric vehicles, and controllable user-side resources—have expanded rapidly, reaching unprecedented levels. The fluctuation and randomness of these new energy sources and loads pose significant challenges for the safe operation and flexible regulation of distribution networks. Consequently, there is an urgent need to modernize and enhance the intelligence of the distribution networks. [Methods] This study analyzes the characteristics and underlying principles of modern smart distribution networks and outlines the intelligence requirements and development priorities for these networks. Given the diversity in distribution network construction, the key technologies for upgrading conventional distribution networks to modern and intelligent systems are explored across five representative scenarios: coordinated microgrid development; efficient integration of charging facilities; optimal utilization of new energy storage technologies; modernization of urban and rural distribution networks; and seamless coordination of generation, network, load, and storage. Based on these connotations, characteristics, and development priorities of modern smart distribution networks, the technical development trajectory and construction priorities for future distribution networks are forecasted. [Results] It is imperative to upgrade the distribution network to a “modern smart distribution network” via high-quality development and construction. Such upgrades will significantly enhance the network’s capability to ensure reliable power supply, support clean energy consumption, accommodate diverse loads, and optimize resource allocation. [Conclusions] As an critical element of the new power system, the modern intelligent distribution network integrates all fundamental components of the new power system. It will continue to facilitate the seamless integration of emerging technologies and foster the development of novel business structures and operational models.

关键词

现代智慧配电网 / 新型能源体系 / 分布式电源 / 源网荷储协同

Key words

modern smart distribution network / new energy system / distributed generation / coordination of generation, network, load, and storage

引用本文

导出引用
娄奇鹤, 李彦斌, 王登政, . 现代智慧配电网发展方向与关键技术框架研究[J]. 电力建设. 2025, 46(5): 69-83 https://doi.org/10.12204/j.issn.1000-7229.2025.05.007
LOU Qihe, LI Yanbin, WANG Dengzheng, et al. Framework for the Development Direction and Key Technologies of Modern Smart Distribution Networks[J]. Electric Power Construction. 2025, 46(5): 69-83 https://doi.org/10.12204/j.issn.1000-7229.2025.05.007
中图分类号: TM72   

参考文献

[1]
李鹏, 王瑞, 冀浩然, 等. 低碳化智能配电网规划研究与展望[J]. 电力系统自动化, 2021, 45(24): 10-21.
LI Peng, WANG Rui, JI Haoran, et al. Research and prospect of planning for low-carbon smart distribution network[J]. Automation of Electric Power Systems, 2021, 45(24): 10-21.
[2]
滕贤亮, 谈超, 昌力, 等. 高比例新能源电力系统有功功率与频率控制研究综述及展望[J]. 电力系统自动化, 2023, 47(15): 12-35.
TENG Xianliang, TAN Chao, CHANG Li, et al. Review and prospect of research on active power and frequency control in power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2023, 47(15): 12-35.
[3]
高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4538.
GAO Hongjun, GUO Minghao, LIU Junyong, et al. Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43(12): 4517-4538.
[4]
马钊, 安婷, 尚宇炜. 国内外配电前沿技术动态及发展[J]. 中国电机工程学报, 2016, 36(6): 1552-1567.
MA Zhao, AN Ting, SHANG Yuwei. State of the art and development trends of power distribution technologies[J]. Proceedings of the CSEE, 2016, 36(6): 1552-1567.
[5]
宋璇坤, 韩柳, 鞠黄培, 等. 中国智能电网技术发展实践综述[J]. 电力建设, 2016, 37(7): 1-11.
SONG Xuankun, HAN Liu, JU Huangpei, et al. A review on development practice of smart grid technology in China[J]. Electric Power Construction, 2016, 37(7): 1-11.
[6]
谭泽富, 周正洋, 高树坤, 等. V2G应用进展综述[J]. 重庆理工大学学报(自然科学), 2023, 37(3): 222-229.
TAN Zefu, ZHOU Zhengyang, GAO Shukun, et al. Literature review of vehicle-to-grid application progress[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(3): 222-229.
[7]
王成山, 李鹏, 于浩. 智能配电网的新形态及其灵活性特征分析与应用[J]. 电力系统自动化, 2018, 42(10): 13-21.
WANG Chengshan, LI Peng, YU Hao. Development and characteristic analysis of flexibility in smart distribution network[J]. Automation of Electric Power Systems, 2018, 42(10): 13-21.
[8]
孙建军, 王灿, 陈业伟, 等. 新型配电网运行韧性综述与展望[J]. 武汉大学学报(工学版), 2022, 55(9): 919-929.
SUN Jianjun, WANG Can, CHEN Yewei, et al. Review and prospects of operation resilience in novel distribution network[J]. Engineering Journal of Wuhan University, 2022, 55(9): 919-929.
[9]
郭力, 李霞林, 王成山. 计及非线性因素的混合供能系统协调控制[J]. 中国电机工程学报, 2012, 32(25): 60-69, 11.
GUO Li, LI Xialin, WANG Chengshan. Coordinated control of hybrid power supply systems considering non-linear factors[J]. Proceedings of the CSEE, 2012, 32(25): 60-69, 11.
[10]
张明锐, 黎娜, 杜志超, 等. 基于小信号模型的微网控制参数选择与稳定性分析[J]. 中国电机工程学报, 2012, 32(25): 9-19, 5.
ZHANG Mingrui, LI Na, DU Zhichao, et al. Control parameter selection and stability analysis of microgrid based on small-signal model[J]. Proceedings of the CSEE, 2012, 32(25): 9-19, 5.
[11]
PRODANOVIC M, GREEN T C. High-quality power generation through distributed control of a power park microgrid[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1471-1482.
[12]
李波, 李世明, 赵瑞锋, 等. 能量管理系统图模一致性的双向校验方法[J]. 电测与仪表, 2023, 60(12): 147-152, 158.
LI Bo, LI Shiming, ZHAO Ruifeng, et al. A chart-model consistency bidirectional calibration method for the energy management system[J]. Electrical Measurement & Instrumentation, 2023, 60(12): 147-152, 158.
[13]
许莹, 陈卓, 郝正航, 等. 混合微电网并离网切换控制技术研究[J]. 电网与清洁能源, 2023, 39(4): 137-146.
XU Ying, CHEN Zhuo, HAO Zhenghang, et al. Research on parallel off-grid switching control technology of hybrid microgrid[J]. Power System and Clean Energy, 2023, 39(4): 137-146.
[14]
周龙, 齐智平. 微电网保护研究综述[J]. 电力系统保护与控制, 2015, 43(13): 147-154.
ZHOU Long, QI Zhiping. A review of the research on microgrid protection development[J]. Power System Protection and Control, 2015, 43(13): 147-154.
[15]
SORTOMME E, VENKATA S S, MITRA J. Microgrid protection using communication-assisted digital relays[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2789-2796.
[16]
金鹏, 艾欣, 许佳佳. 基于序列运算理论的孤立微电网经济运行模型[J]. 中国电机工程学报, 2012, 32(25): 52-59, 10.
JIN Peng, AI Xin, XU Jiajia. An economic operation model for isolated microgrid based on sequence operation theory[J]. Proceedings of the CSEE, 2012, 32(25): 52-59, 10.
[17]
徐立中, 杨光亚, 许昭, 等. 考虑风电随机性的微电网热电联合调度[J]. 电力系统自动化, 2011, 35(9): 53-60, 66.
XU Lizhong, YANG Guangya, XU Zhao, et al. Combined scheduling of electricity and heat in a microgrid with volatile wind power[J]. Automation of Electric Power Systems, 2011, 35(9): 53-60, 66.
[18]
孟明, 陈世超, 赵树军, 等. 新能源微电网研究综述[J]. 现代电力, 2017, 34(1): 1-7.
MENG Ming, CHEN Shichao, ZHAO Shujun, et al. Overview on research of renewable energy microgrid[J]. Modern Electric Power, 2017, 34(1): 1-7.
[19]
王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12.
WANG Chengshan, WU Zhen, LI Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12.
[20]
王震坡, 张瑾, 刘鹏, 等. 电动汽车充电站规划研究综述[J]. 中国公路学报, 2022, 35(12): 230-252.
摘要
新能源汽车尤其是电动汽车已在全球范围内得到广泛推广应用,从而带来了巨大的充电需求。同时,部分充电站规划不合理导致充电站空间布局和服务容量与实际充电需求不匹配,充电站利用率低和用户充电不便并存的现象已经成为了电动汽车产业痛点。充电站的合理布局规划是优化电动汽车使用体验和充电体验、降低用户“里程焦虑”、提高充电桩利用率、优化城市电动汽车交通网络和电力网络的关键,也成为当前电动汽车及智能交通领域急需解决的问题。为提供该领域较为全面的综述视角,首先概述电动汽车充电站的发展情况、设施类型、相关标准,总结从“车端”、“站端”出发的电动汽车充电需求估计方法,然后从选址、定容、求解算法维度分析充电站规划模型,列举国内外在多优化目标、多约束条件、多阶段规划的覆盖模型、截流模型等规划模型中的研究成果,以及在各经典模拟网络和实际城市环境中的测试、应用情况,最后对目前充电站规划领域存在的充电需求估计准确性、充电站与未来需求的匹配度等问题进行总结,对“车-桩-路-网”互联时代下充分利用电动汽车的分布式储能、灵活充放电的特征进行有序充电引导、新能源消纳、电网削峰填谷的协同规划发展应用前景进行展望。
WANG Zhenpo, ZHANG Jin, LIU Peng, et al. Overview of planning of electric vehicle charging stations[J]. China Journal of Highway and Transport, 2022, 35(12): 230-252.
The wide promotion and application of new-energy vehicles, especially electric ones, has resulted in huge charging demands. However, owing to the unreasonable planning of some charging stations, the spatial layout and service capacity of charging stations do not match the actual charging demands, and the coexistence of a low utilization rate of charging stations and inconvenient charging for users has become a significant problem in the electric vehicle industry. Reasonable location and deployment planning of charging stations is essential to optimize the usage and charging experience of electric vehicles, alleviate the “mileage anxiety” of users, improve the utilization rate of charging piles, and optimize the urban transportation and power grid network. This problem must also be solved in the field of intelligent transportation. To provide a more comprehensive overview of the problem, the development, types, and standards of charging stations are reviewed, and the charging demand estimation and prediction methods used on the “vehicle side” “ and “station side” are described. Then, charging station planning methods are analyzed from the perspectives of siting, sizing, and solutions. Research results on multiobjective, multiconstraint, and multiperiod covering models and flow-based models, as well as their application to simulation networks and actual city environments, are listed. Finally, existing problems in current research, including the accuracy of charging demand estimation and the match of charging stations to demands, are summarized. The coordinated planning for orderly charging guidance, new energy consumption, and “cut peak and fill valley” of the grid to make full use of the characteristics of distributed energy storage and flexible charging and discharging of electric vehicles in the era of vehicle-pile-road-grid interconnection is also discussed.
[21]
WANG Z P, LIU P, HAN H B, et al. A distribution model of electric vehicle charging station[J]. Applied Mechanics and Materials, 2010, 44: 1543-1548.
[22]
刘自发, 张伟, 王泽黎. 基于量子粒子群优化算法的城市电动汽车充电站优化布局[J]. 中国电机工程学报, 2012, 32(22): 39-45, 20.
LIU Zifa, ZHANG Wei, WANG Zeli. Optimal planning of charging station for electric vehicle based on quantum PSO algorithm[J]. Proceedings of the CSEE, 2012, 32(22): 39-45, 20.
[23]
SCHMIDT M, STAUDT P, WEINHARDT C. Evaluating the importance and impact of user behavior on public destination charging of electric vehicles[J]. Applied Energy, 2020, 258: 114061.
[24]
LIU A J, ZHAO Y X, MENG X G, et al. A three-phase fuzzy multi-criteria decision model for charging station location of the sharing electric vehicle[J]. International Journal of Production Economics, 2020, 225: 107572.
[25]
HARRIS C B, WEBBER M E. An empirically-validated methodology to simulate electricity demand for electric vehicle charging[J]. Applied Energy, 2014, 126: 172-181.
[26]
SCHÄUBLE J, KASCHUB T, ENSSLEN A, et al. Generating electric vehicle load profiles from empirical data of three EV fleets in Southwest Germany[J]. Journal of Cleaner Production, 2017, 150: 253-266.
[27]
WOLBERTUS R, KROESEN M, VAN DEN HOED R, et al. Fully charged: an empirical study into the factors that influence connection times at EV-charging stations[J]. Energy Policy, 2018, 123: 1-7.
[28]
CHEN T D, KOCKELMAN K M, KHAN M. Locating electric vehicle charging stations[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2385(1): 28-36.
[29]
HE J, YANG H, TANG T Q, et al. An optimal charging station location model with the consideration of electric vehicle’s driving range[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 641-654.
[30]
HE S Y, KUO Y H, WU D. Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: a case study of Beijing, China[J]. Transportation Research Part C: Emerging Technologies, 2016, 67: 131-148.
[31]
UPCHURCH C, KUBY M, LIM S. A model for location of capacitated alternative-fuel stations[J]. Geographical Analysis, 2009, 41(1): 85-106.
[32]
LIU H X, WANG D Z W. Locating multiple types of charging facilities for battery electric vehicles[J]. Transportation Research Part B: Methodological, 2017, 103: 30-55.
[33]
XIANG Y, LIU J Y, LI R, et al. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates[J]. Applied Energy, 2016, 178: 647-659.
[34]
侯慧, 王逸凡, 赵波, 等. 价格与激励需求响应下电动汽车负荷聚集商调度策略[J]. 电网技术, 2022, 46(4): 1259-1269.
HOU Hui, WANG Yifan, ZHAO Bo, et al. Electric vehicle aggregator dispatching strategy under price and incentive demand response[J]. Power System Technology, 2022, 46(4): 1259-1269.
[35]
王伟杰, 黄海宇, 徐远途, 等. 电动汽车参与主动配电网电压调控的策略研究[J]. 广东电力, 2023, 36(10): 93-104.
WANG Weijie, HUANG Haiyu, XU Yuantu, et al. Strategy research on electric vehicles participating in active distribution network voltage regulation[J]. Guangdong Electric Power, 2023, 36(10): 93-104.
[36]
邓艺璇, 黄玉萍, 黄周春. 基于随机森林算法的电动汽车充放电容量预测[J]. 电力系统自动化, 2021, 45(21): 181-188.
DENG Yixuan, HUANG Yuping, HUANG Zhouchun. Charging and discharging capacity forecasting of electric vehicles based on random forest algorithm[J]. Automation of Electric Power Systems, 2021, 45(21): 181-188.
[37]
CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of charging plug-In hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380.
[38]
吴雨, 王育飞, 张宇, 等. 基于改进免疫克隆选择算法的电动汽车充电站选址定容方法[J]. 电力系统自动化, 2021, 45(7): 95-103.
WU Yu, WANG Yufei, ZHANG Yu, et al. Siting and sizing method of electric vehicle charging station based on improved immune clonal selection algorithm[J]. Automation of Electric Power Systems, 2021, 45(7): 95-103.
[39]
范培潇, 刘学成, 杨军, 等. 考虑配电网与电化学储能交互耦合关系的异常运行状态预警方法[J]. 全球能源互联网, 2024, 7(4): 383-392.
FAN Peixiao, LIU Xuecheng, YANG Jun, et al. An abnormal operation state early warning method considering the interactive coupling relationship between distribution networks and electrochemical energy storage[J]. Journal of Global Energy Interconnection, 2024, 7(4): 383-392.
[40]
肖冰, 吴晓丹, 尹宏学, 等. 蒙东地区适应新能源消纳的储能系统配置效果分析[J]. 热力发电, 2020, 49(7): 13-20.
XIAO Bing, WU Xiaodan, YIN Hongxue, et al. Configuration effect of energy storage system in Mengdong grid for new energy consumption[J]. Thermal Power Generation, 2020, 49(7): 13-20.
[41]
鄂志君, 王桂林, 李振斌, 等. 提升新能源电网消纳水平的混合储能系统优化控制方法[J]. 电力系统及其自动化学报, 2021, 33(3): 132-137.
E Zhijun, WANG Guilin, LI Zhenbin, et al. Optimization control method for hybrid energy storage system to enhance the renewable energy absorption level of power grid[J]. Proceedings of the CSU-EPSA, 2021, 33(3): 132-137.
[42]
王伟, 孙夏, 郭俊, 等. 考虑负荷不确定性的配电网分层协调控制策略[J]. 分布式能源, 2024, 9(2): 89-96.
WANG Wei, SUN Xia, GUO Jun, et al. Layered coordination control of distribution network considering load uncertainty[J]. Distributed Energy, 2024, 9(2): 89-96.
[43]
张智, 周明, 武昭原, 等. 考虑动态频率支撑的储能选址定容规划方法[J]. 中国电机工程学报, 2023, 43(7): 2708-2721.
ZHANG Zhi, ZHOU Ming, WU Zhaoyuan, et al. Energy storage location and capacity planning method considering dynamic frequency support[J]. Proceedings of the CSEE, 2023, 43(7): 2708-2721.
[44]
柴文化. 抑制直流系统连续换相失败的储能电站控制策略[D]. 北京: 华北电力大学, 2021.
CHAI Wenhua. Control strategy of energy storage power station to suppress continuous commutation failure of DC system[D]. Beijing: North China Electric Power University, 2021.
[45]
LI J, MA X Y, LIU C C, et al. Distribution system restoration with microgrids using spanning tree search[J]. IEEE Transactions on Power Systems, 2014, 29(6): 3021-3029.
[46]
宋天昊, 李柯江, 韩肖清, 等. 储能系统参与多应用场景的协同运行策略[J]. 电力系统自动化, 2021, 45(19): 43-51.
SONG Tianhao, LI Kejiang, HAN Xiaoqing, et al. Coordinated operation strategy of energy storage system participating in multiple application scenarios[J]. Automation of Electric Power Systems, 2021, 45(19): 43-51.
[47]
李煜阳, 李相俊, 刘国静, 等. 适应多功能需求的储能系统优化运行研究[J]. 供用电, 2021, 38(6): 29-34, 42.
LI Yuyang, LI Xiangjun, LIU Guojing, et al. Research on distributed energy storage operation majorization under multiple application scenarios[J]. Distribution & Utilization, 2021, 38(6): 29-34, 42.
[48]
熊雄, 杨仁刚, 叶林, 等. 电力需求侧大规模储能系统经济性评估[J]. 电工技术学报, 2013, 28(9): 224-230.
XIONG Xiong, YANG Rengang, YE Lin, et al. Economic evaluation of large-scale energy storage allocation in power demand side[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 224-230.
[49]
张志华, 刘健, 张小庆, 等. 面向供电可靠性的城市配电网单相接地故障处理配置策略研究[J]. 供用电, 2022, 39(9): 27-34.
ZHANG Zhihua, LIU Jian, ZHANG Xiaoqing, et al. Research on strategy of single-phase grounding fault treatment in urban distribution network for power supply reliability[J]. Distribution & Utilization, 2022, 39(9): 27-34.
[50]
雷敏, 魏务卿, 曾进辉, 等. 考虑需求响应的负荷控制对供电可靠性影响分析[J]. 电力系统自动化, 2018, 42(10): 53-59.
LEI Min, WEI Wuqing, ZENG Jinhui, et al. Effect of load control on power supply reliability considering demand response[J]. Automation of Electric Power Systems, 2018, 42(10): 53-59.
[51]
廖一茜, 张静, 王主丁, 等. 中压架空线开关配置三阶段优化算法[J]. 电网技术, 2018, 42(10): 3413-3419.
LIAO Yixi, ZHANG Jing, WANG Zhuding, et al. Three-stage optimization algorithm for the sectionalizing switch placement of a medium voltage overhead line[J]. Power System Technology, 2018, 42(10): 3413-3419.
[52]
胡子健, 朱红, 韦磊, 等. 考虑风光荷储互动的配电网孤岛划分图计算方法[J]. 广东电力, 2024, 37(12): 70-78.
HU Zijian, ZHU Hong, WEI Lei, et al. Islanding partition of active distribution network based on graph computation considering wind-solar-storage-load interaction[J]. Guangdong Electric Power, 2024, 37(12): 70-78.
[53]
苏韵掣, 刘俊勇, 刘友波, 等. 大规模中压配电网可靠性建设改造措施优选模型及求解方法[J]. 电网技术, 2017, 41(1): 201-210.
SU Yunche, LIU Junyong, LIU Youbo, et al. Optimization model of selecting power supply reliability reconstruction measures in large-scale MV distribution network and its solution method[J]. Power System Technology, 2017, 41(1): 201-210.
[54]
谢义苗, 熊颖杰, 赖永萍, 等. 城市配电网高可靠性网架设计方案[J]. 供用电, 2019, 36(12): 55-61.
XIE Yimiao, XIONG Yingjie, LAI Yongping, et al. High-reliability grid design scheme for urban distribution network[J]. Distribution & Utilization, 2019, 36(12): 55-61.
[55]
宋若晨, 袁明瀚, 仇成. 上海城市配电网分层架构中应用“开关站链” 模式的可靠性优化策略[J]. 电网技术, 2022, 46(11): 4466-4472.
SONG Ruochen, YUAN Minghan, QIU Cheng. Reliability upgrade strategy with application of switch station chain mode in layered architecture of Shanghai electricity distribution network[J]. Power System Technology, 2022, 46(11): 4466-4472.
[56]
郁海彬, 董烨, 翁锦德, 等. 电力5G切片在城市配电网中的应用及经济效益研究[J]. 综合智慧能源, 2024, 46(1): 75-83.
摘要
“零停电”“零闪动”的背后是新时代一流城市配电网的坚强保障。为了高度匹配新型电力系统通信需求,解决业务接入难点问题,从城市配电网通信现状的局限性角度出发,技术上以5G网络的超高带宽(eMBB)、高可靠超低时延(uRLLC)、超大规模连接(mMTC)三大特点为基础,结合5G切片技术,构建配电自动化、差动保护、精准负控等专属网络应用场景,归纳其关键通信需求,使其管理更灵活、高效、经济与安全。根据部署的3种通信组网数据对比,电力5G切片给电网带来的经济效益更大,从技术应用和经济效益2个层面论证电力5G切片赋能城市配电网的可行性。
YU Haibin, DONG Ye, WENG Jinde, et al. Research on the application and economic benefits of 5G slice in the urban distribution network[J]. Integrated Intelligent Energy, 2024, 46(1): 75-83.

A cutting-edge municipal distribution network is the powerful backing of "zero power outage" and "zero flash". Considering the limitations of current municipal distribution networks,5G network technology offering three generic services, ultra-high bandwidth(eMBB), ultra-reliable and ultra-low delay(uRLLC) and ultra-large scale connection (mMTC), is taken to support the upgrading of new power system's communication needs and to solve the difficulties in service access. Special network application scenarios such as distribution automation, differential protection and precise negative control are constructed based on 5G slicing technology. Key requirements for communication are summarized to make the network management more flexible, efficient, economical and secure. According to the comparison of the data from three deployed communication networks, the economic benefits brought by the 5G slice to the power grid is more prominent. The feasibility of the 5G-enabled municipal distribution network is verified from technical applications and economic benefits.

[57]
于洋, 孙辉, 方照, 等. 配电网保护通信时延需求约束的5G通信切片接入优化研究[J]. 供用电, 2021, 38(5): 29-34.
YU Yang, SUN Hui, FANG Zhao, et al. Research on 5G communication slice access optimization with communication delay demand constraint of distribution network protection[J]. Distribution & Utilization, 2021, 38(5): 29-34.
[58]
杨金东, 吴万军, 孙文静, 等. 含高渗透率光伏的农村配电网三相不平衡治理[J]. 供用电, 2023, 40(1): 65-72.
YANG Jindong, WU Wanjun, SUN Wenjing, et al. Three-phase imbalance control of rural distribution network with high-penetration photovoltaic[J]. Distribution & Utilization, 2023, 40(1): 65-72.
[59]
詹琪, 李鹏丽, 孟晓丽, 等. 考虑经济性最优的农村配电网储能调压策略[J]. 农村电气化, 2023(2): 18-23.
ZHAN Qi, LI Pengli, MENG Xiaoli, et al. Energy storage and voltage regulation strategy for rural distribution network considering economic optimization[J]. Rural Electrification, 2023(2): 18-23.
[60]
易春磊, 柴良明, 王世友, 等. 基于改进型混沌遗传算法的农村配电网无功补偿研究[J]. 电气自动化, 2022, 44(4): 40-43.
YI Chunlei, CHAI Liangming, WANG Shiyou, et al. Research on reactive power compensation of rural distribution network based on improved chaotic genetic algorithm[J]. Electrical Automation, 2022, 44(4): 40-43.
[61]
缪雨函, 许寅, 王颖. 面向恢复力提升的高比例分布式光伏接入配电网规划方法[J]. 山东电力技术, 2024, 51(8): 1-9.
MIAO Yuhan, XU Yin, WANG Ying. Planning of distribution system integrated with high-penetration photovoltaic for the resilience improvement[J]. Shandong Electric Power, 2024, 51(8): 1-9.
[62]
何启晨, 阮浩洁, 王劲松. 台区低压柔性互联技术在新农村配电网的实践应用[J]. 农村电气化, 2023(3): 32-38.
HE Qichen, RUAN Haojie, WANG Jinsong. Practical application of low-voltage flexible interconnection technology of station area for new rural distribution network[J]. Rural Electrification, 2023(3): 32-38.
[63]
LIU X Z, MANCARELLA P. Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems[J]. Applied Energy, 2016, 167: 336-352.
[64]
张新, 杨建华, 王维洲, 等. 面向农村微能网的评价指标构建及应用[J]. 农业工程学报, 2020, 36(6): 196-205.
ZHANG Xin, YANG Jianhua, WANG Weizhou, et al. Construction and application of evaluation indexes for rural micro-energy-grid[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 196-205.
[65]
金秋龙, 刘文霞, 成锐, 等. 基于完全信息动态博弈理论的光储接入网源协调规划[J]. 电力系统自动化, 2017, 41(21): 112-118.
JIN Qiulong, LIU Wenxia, CHENG Rui, et al. Coordinated planning model for photovoltaic station, storage battery and grid based on complete information dynamic game[J]. Automation of Electric Power Systems, 2017, 41(21): 112-118.
[66]
李逐云, 雷霞, 邱少引, 等. 考虑“源- 网- 荷” 三方利益的主动配电网协调规划[J]. 电网技术, 2017, 41(2): 378-387.
LI Zhuyun, LEI Xia, QIU Shaoyin, et al. Coordinated planning of active distribution network considering “source-grid-load” benefits[J]. Power System Technology, 2017, 41(2): 378-387.
[67]
刘自发, 张子腾. 考虑多主体博弈的配电网源网荷储协同规划[J]. 电网技术, 2023, 47(12): 5046-5058.
LIU Zifa, ZHANG Ziteng. Collaborative planning of distribution network source-network-load-storage considering multi-agent game[J]. Power System Technology, 2023, 47(12): 5046-5058.
[68]
徐韵, 颜湘武, 李若瑾, 等. 电力市场环境下含“源-网-荷-储” 互动的主动配电网有功/无功联合优化[J]. 电网技术, 2019, 43(10): 3778-3789.
XU Yun, YAN Xiangwu, LI Ruojin, et al. Joint optimization of active and reactive powers in active distribution network with “generation-grid-load-energy storage” interaction in power market environment[J]. Power System Technology, 2019, 43(10): 3778-3789.
[69]
GUO Y F, WU Q W, GAO H L, et al. MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1731-1739.
[70]
柴园园, 赵晓波, 吕超贤, 等. 基于Fisher时段划分的配电网源-网-荷-储多时间尺度协调优化调控策略[J]. 电网技术, 2024, 48(4): 1593-1606.
CHAI Yuanyuan, ZHAO Xiaobo, Chaoxian, et al. Coordinated multi-time scale optimal regulation for source-grid-load-storage of distribution network based on fisher period division[J]. Power System Technology, 2024, 48(4): 1593-1606.
[71]
赵晶晶, 朱炯达, 刘帅, 等. 基于集群划分的配电网多时间尺度分布式有功-无功协同优化方法[J]. 电测与仪表, 2024, 61(10): 57-66.
ZHAO Jingjing, ZHU Jiongda, LIU Shuai, et al. Multi-timescale distributed active and reactive power coordinated optimization method of distributed network based on cluster division[J]. Electrical Measurement & Instrumentation, 2024, 61(10): 57-66.
[72]
刘敦楠, 徐尔丰, 许小峰. 面向园区微网的“ 源-网-荷-储” 一体化运营模式[J]. 电网技术, 2018, 42(3): 681-689.
LIU Dunnan, XU Erfeng, XU Xiaofeng. “ Source-network-load-storage” integrated operation model for microgrid in park[J]. Power System Technology, 2018, 42(3): 681-689.

基金

国家社会科学基金项目(23BJL006)

编辑: 魏希辉
PDF(3414 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/