超低频振荡频率动态特性分析与多机GPSS参数设计方法

曾丕江, 许昊, 叶鹏举, 郑超, 赛翔羽, 陈刚, 赵勇, 江出阳, 甘德强

电力建设 ›› 2025, Vol. 46 ›› Issue (5) : 170-182.

PDF(2200 KB)
PDF(2200 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (5) : 170-182. DOI: 10.12204/j.issn.1000-7229.2025.05.015
新能源与储能

超低频振荡频率动态特性分析与多机GPSS参数设计方法

作者信息 +

Frequency Dynamic Characteristic Analysis of Ultra-Low Frequency Oscillation and Multi-Machine GPSS Parameter Tuning Method

Author information +
文章历史 +

摘要

【目的】 随着电力系统整体惯量的降低,频率稳定问题愈加突出。为更好地分析新型电力系统的频率稳定性和调节性能,提出了一种针对超低频振荡的频率动态特性分析方法,并给出了多机调速器侧电力系统稳定器(governor power system stabilizer, GPSS)参数设计方法,以提高频率稳定与调节性能。【方法】 所提方法从频域角度,推导了一个综合考虑电力系统稳定性与频率调节性能的频率特性分析模型。首先,基于转子回路推导出频率特性分析模型,并证明模型的分配向量元素常值及转速响应函数矩阵近似全等性质。然后,利用这一性质对模型进行简化,得到一个超低频振荡低维动态分析模型,最后基于该模型构建了一种多机GPSS参数设计方法。【结果】将所提出的频率动态分析模型应用于实际电力系统中,结合矢量裕度分析,揭示了GPSS抑制超低频振荡的机理。通过IEEE 4机11节点算例验证了分配向量和转速响应函数性质以及模型的正确性;10机39节点算例和云南电网等值算例的时域仿真和矢量裕度结果验证了GPSS参数设计方法的有效性。【结论】所提频率动态特性分析方法及简化模型为工程中常用的统一频率模型提供了理论依据,为电力系统频率稳定性分析提供了新的工具,对提高新型电力系统的频率调节能力具有重要意义。结合GPSS参数整定方法,实现了对超低频振荡的有效抑制,增强电力系统的稳定性与调节性能。

Abstract

[Objective] The growing concern over frequency stability is attributed to the decreasing overall inertia of power systems. To improve the analysis of frequency stability and performance of modern power systems, a frequency dynamic characteristic analysis method for ultralow frequency oscillations is proposed, in addition to a multimachine governor power system stabilizer (GPSS) parameter tuning method aimed at enhancing the frequency regulation performance. [Methods] The proposed method developed a frequency characteristic analysis model that integrates power system stability and frequency regulation performance from the frequency-domain perspective. Initially, a model was derived based on the rotor circuit, thereby demonstrating the properties of constant distribution vector elements and the approximate congruence of the speed response function matrix. Subsequently, leveraging these properties, the model was simplified to form a low-dimensional dynamic framework for analyzing ultralow-frequency oscillations. Finally, a parameter-tuning method for multimachine GPSS was developed based on this model. [Results] The proposed frequency dynamic analysis model was applied to practical power systems, and the GPSS mechanism for suppressing ultralow-frequency oscillations was revealed via vector margin analysis. The validity of the distribution vector and speed response function properties, as well as the overall model were validated using an IEEE 4-machine 11-node case study. The effectiveness of the GPSS parameter tuning method was validated via time-domain simulations and vector margin assessments for both a 10-machine 39-node system and an equivalent model of the Yunnan power grid. [Conclusions] The proposed frequency dynamic characteristic analysis method and its simplified model provide a theoretical foundation for the widely employed unified frequency models in engineering. This approach provides a novel tool for frequency stability analysis of power systems and is of great significance for advancing the frequency regulation capabilities of modern grids. Furthermore, the GPSS parameter-tuning method facilitates effective suppression of ultra-low-frequency oscillations, thereby enhancing the stability and performance of power systems.

关键词

频率动态分析 / 超低频振荡 / 矢量裕度 / 调速器侧电力系统稳定器(GPSS) / 云南电网

Key words

frequency dynamic analysis / ultra-low frequency oscillation / vector margin / governor power system stabilizer(GPSS) / Yunnan power grid

引用本文

导出引用
曾丕江, 许昊, 叶鹏举, . 超低频振荡频率动态特性分析与多机GPSS参数设计方法[J]. 电力建设. 2025, 46(5): 170-182 https://doi.org/10.12204/j.issn.1000-7229.2025.05.015
ZENG Pijiang, XU Hao, YE Pengju, et al. Frequency Dynamic Characteristic Analysis of Ultra-Low Frequency Oscillation and Multi-Machine GPSS Parameter Tuning Method[J]. Electric Power Construction. 2025, 46(5): 170-182 https://doi.org/10.12204/j.issn.1000-7229.2025.05.015
中图分类号: TM712   

参考文献

[1]
王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003: 240-286.
[2]
SHI P, ZHOU J H, GAN D Q, et al. A rational fractional representation method for wind power integrated power system parametric stability analysis[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7122-7131.
[3]
许昊, 甘德强, 黄润, 等. 基于最小特征轨迹的电力系统稳定器参数整定方法[J]. 电力系统自动化, 2023, 47(5): 134-143.
XU Hao, GAN Deqiang, HUANG Run, et al. Parameter tuning method for power system stabilizer based on minimum characteristic locus[J]. Automation of Electric Power Systems, 2023, 47(5): 134-143.
[4]
XU H, GAN D Q, ZHANG Q B, et al. A small-signal stability analysis method based on minimum characteristic locus and its application in controller parameter tuning[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3798-3810.
[5]
SAUER P W, PAI M A, CHOW J H. Power system dynamics and stability: with synchrophasor measurement and power system toolbox 2e: with Synchrophasor measurement and power system toolbox[M]. New York: John Wiley & Sons, 2017.
[6]
Power system stability and control[M]. New York: McGraw-Hill Professional, 1994.
[7]
李振垚, 甘德强, 栾某德, 等. 基于全状态模型的自同步电压源并网系统频率稳定分析[J]. 中国电力, 2023, 56(5): 182-192.
LI Zhenyao, GAN Deqiang, LUAN Moude, et al. Frequency stability analysis based on full state model in autonomous-synchronization voltage source interfaced power system[J]. Electric Power, 2023, 56(5): 182-192.
[8]
郑华, 赵志强, 刘斯伟, 等. 适应新型电力系统快速频率支撑需求的混合型储能系统动态建模及其控制策略分析[J]. 电力建设, 2022, 43(8): 13-21.
摘要
为明确混合型储能快速频率支撑对新型电力系统动态特性的影响,寻找不同场景下混合型储能系统的最佳频率控制策略,提出一种具有通用性的混合型储能系统动态建模方法,并基于该模型设计了适用于蓄电池与飞轮储能组成的混合型储能系统的PI、H<sub>&#x0221e;</sub>及滑模控制策略。通过算例分析比较了不同控制策略下该混合储能系统对电网的频率支持能力。结果显示,当蓄电池采用H<sub>&#x0221e;</sub>控制,飞轮储能系统采用滑模控制时可实现最佳频率支撑效果。
ZHENG Hua, ZHAO Zhiqiang, LIU Siwei, et al. Modelling and control of hybrid energy storage system with fast frequency response in new power system[J]. Electric Power Construction, 2022, 43(8): 13-21.
[9]
李立, 王佳明, 张青蕾, 等. 兼顾系统频率稳定性和小干扰稳定性的构网型储能参数优化方法[J]. 电力建设, 2023, 44(12): 125-135.
摘要
为了应对新能源惯量不足的问题,构网型储能中的虚拟同步机控制技术得到了不断发展,而其为系统提供了惯量支撑的同时也会引发系统的功率振荡,降低系统的功角稳定性。针对此问题,文章阐释了虚拟同步机惯量、阻尼参数对系统稳定性的影响机理,并提出了虚拟同步机的参数优化策略。该策略同时考虑系统的频率稳定性与小干扰稳定性,建立目标函数优化模型,以最大频率偏差最小与系统振荡模式的阻尼比之和最大为目标函数,将各控制参数的稳定区间作为约束条件,并运用带有精英策略的快速非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-Ⅱ)求解。最后,通过仿真验证了此方法的有效性。
LI Li, WANG Jiaming, ZHANG Qinglei, et al. Parameter optimization method of grid-forming energy storage considering system frequency stability and small signal stability[J]. Electric Power Construction, 2023, 44(12): 125-135.
To deal with the problem of insufficient inertia of new energy, the control technology of virtual synchronous generators (VSG) in grid-forming energy storage has been continuously developed, which provides inertia support for the system while causing power oscillation and reducing the power angle stability of the system. To solve this problem, the mechanism of the influence of the virtual inertia and virtual damping parameters of the virtual synchronous generator on the system stability is explained, and a parameter optimization strategy is proposed for the virtual synchronous generator. This strategy simultaneously considers the frequency stability and small-signal stability of the system to establish an objective function optimization model. The objective function minimizes the maximum frequency deviation and the maximum sum of the damping ratio of the system oscillation mode. The stability interval of each control parameter is considered the constraint condition. The strategy was solved using a fast non-dominated sequencing genetic algorithm (NSGA-II) with an elite strategy. Finally, the effectiveness of this method is verified through a simulation.
[10]
DANDENO P L, KUNDUR P, BAYNE J P. Hydraulic unit dynamic performance under normal and islanding conditions - analysis and validation[J]. IEEE Transactions on Power Apparatus Systems, 1978, 97(6): 2134-2143.
[11]
VILLEGAS PICO H N, ALIPRANTIS D C, MCCALLEY J D, et al. Analysis of hydro-coupled power plants and design of robust control to damp oscillatory modes[J]. IEEE Transactions on Power Systems, 2015, 30(2): 632-643.
[12]
路晓敏, 陈磊, 陈亦平, 等. 电力系统一次调频过程的超低频振荡分析[J]. 电力系统自动化, 2017, 41(16): 64-70.
LU Xiaomin, CHEN Lei, CHEN Yiping, et al. Ultra-low-frequency oscillation of power system primary frequency regulation[J]. Automation of Electric Power Systems, 2017, 41(16): 64-70.
[13]
JIANG C X, ZHOU J H, SHI P, et al. Ultra-low frequency oscillation analysis and robust fixed order control design[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 269-278.
[14]
周子超, 吴水军, 束洪春, 等. 含有调速器多死区环节的风水火系统频率稳定分析[J]. 电力系统保护与控制, 2024, 52(5): 1-11.
ZHOU Zichao, WU Shuijun, SHU Hongchun, et al. Frequency stability analysis of a wind-hydro-thermal system with a governor multi-dead-zone link[J]. Power System Protection and Control, 2024, 52(5): 1-11.
[15]
屈兴武, 王栋, 马天诚, 等. 支撑电网频率稳定的双馈风机一次调频控制需求分析[J]. 智慧电力, 2023, 51(10): 38-46.
QU Xingwu, WANG Dong, MA Tiancheng, et al. Requirement analysis of DFIG primary frequency regulation control supporting grid frequency stability[J]. Smart Power, 2023, 51(10): 38-46.
[16]
莫维科, 严焕斌, 赵天阳, 等. 计及调速系统详细模型和调频备用的大扰动下频率最低值预测方法[J]. 电力系统保护与控制, 2024, 52(9): 79-87.
MO Weike, YAN Huanbin, ZHAO Tianyang, et al. Frequency nadir prediction for large disturbances in power systems considering detailed governor system models and frequency regulation reserves[J]. Power System Protection and Control, 2024, 52(9): 79-87.
[17]
程林, 王吉利, 韩志勇, 等. 新能源接入对区域系统频率稳定的影响及机组改进控制策略[J]. 电力科学与技术学报, 2024, 39(2): 28-34.
CHENG Lin, WANG Jili, HAN Zhiyong, et al. Impact of new energy access on regional system frequency stability and unit improvement control strategy[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 28-34.
[18]
杨力, 朱晓纲, 李勇, 等. 规模化储能虚拟同步控制策略及其惯量分析[J]. 电力科学与技术学报, 2024, 39(2): 190-197.
YANG Li, ZHU Xiaogang, LI Yong, et al. Virtual synchronous control strategy and inertia analysis of large-scale energy storage[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 190-197.
[19]
李世春, 苏凌杰, 张志刚, 等. 基于改进粒子群算法的风电场虚拟惯量优化分配方法[J]. 智慧电力, 2023, 51(8): 8-14, 22.
LI Shichun, SU Lingjie, ZHANG Zhigang, et al. Optimal allocation method of wind farm virtual inertia based on improved particle swarm optimization algorithm[J]. Smart Power, 2023, 51(8): 8-14, 22.
[20]
项颂, 苏鹏, 吴坚, 等. 基于多源储能协同的交直流送端系统惯量优化控制模型[J]. 中国电力, 2023, 56(4): 68-76.
XIANG Song, SU Peng, WU Jian, et al. Inertia optimization control model of AC/DC sending-end system based on multi-source energy storage coordination[J]. Electric Power, 2023, 56(4): 68-76.
[21]
WANG H F, HAO Y S, HOGG B W, et al. Stabilization of power systems by governor-turbine control[J]. International Journal of Electrical Power & Energy Systems, 1993, 15(6): 351-361.
[22]
林其友, 陈星莺, 曹智峰. 多机系统调速侧电力系统稳定器GPSS的设计[J]. 电网技术, 2007, 31(3): 54-58.
LIN Qiyou, CHEN Xingying, CAO Zhifeng. Design of a governor-side power system stabilizer for multi-machine power system[J]. Power System Technology, 2007, 31(3): 54-58.
[23]
刘少博, 王德林, 马宁宁, 等. 水电机组引起的超低频振荡特性及抑制措施研究[J]. 中国电机工程学报, 2019, 39(18): 5354-5362, 5582.
LIU Shaobo, WANG Delin, MA Ningning, et al. Study on characteristics and suppressing countermeasures of ultra-low frequency oscillation caused by hydropower units[J]. Proceedings of the CSEE, 2019, 39(18): 5354-5362, 5582.
[24]
HATZIARGYRIOU N, MILANOVIC J, RAHMANN C, et al. Definition and classification of power system stability: revisited & extended[J]. IEEE Transactions on Power Systems, 2020, 36(4): 3271-3281.
[25]
HUANG W, XU H, ZHANG Q B, et al. An excitation mode analysis method for multi-machine systems based on minimum characteristic loci[C]//2021 International Conference on Power System Technology (POWERCON). IEEE, 2021: 505-509.
[26]
高晖胜. 新能源电力系统模态频率:定义、分析与控制[D]. 杭州: 浙江大学, 2022.
GAO Huisheng. Modal frequency of new energy power system: definition, analysis and control[D]. Hangzhou: Zhejiang University, 2022.
[27]
陈磊, 路晓敏, 陈亦平, 等. 多机系统超低频振荡分析与等值方法[J]. 电力系统自动化, 2017, 41(22): 10-15, 25.
CHEN Lei, LU Xiaomin, CHEN Yiping, et al. Analysis of ultra-low-frequency oscillations in multi-machine system and equivalent method[J]. Automation of Electric Power Systems, 2017, 41(22): 10-15, 25.
[28]
FIEDLER M. Special matrices and their applications in numerical mathematics[M]. Dordrecht: Martinus Nijhoff Publishers, 1986.
[29]
倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002.
[30]
LI Z, LI J, GAN D. An analytical approach for power system frequency stability evaluation[J]. IET Generation, Transmission & Distribution, 2024, 18(16): 2732-2745.
[31]
ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720-729.
[32]
GRENIER M E, LEFEBVRE D,VAN CUTSEM T. Quasi steady-state models for long-term voltage and frequency dynamics simulation[C]// 2005 IEEE Russia Power Tech. IEEE, 2005: 1-8.
[33]
FRANKLIN G F, POWELL J D, EMAMI-NAEINI A. Feedback control of dynamic systems[M]. 6th ed. Upper Saddle River: Pearson, 2010.
[34]
刘康志, 姚郁. 线性鲁棒控制[M]. 北京: 科学出版社, 2013.
[35]
井浩然, 李佳, 赵红生, 等. 双馈变速抽水蓄能全工况转换过程建模与仿真[J]. 电力建设, 2023, 44(10): 41-50.
摘要
双馈变速抽水蓄能机组具有运行范围宽、功率调节速度快并能兼顾发电、抽水工况最优效率的优点,同时也赋予了其运行工况多、工况转换频繁的特点。然而,现有双馈变速抽蓄的仿真建模仅以单一发电或抽水工况为主,并未充分体现变速抽蓄工况转换的特性和优势。因此,文章建立了可在发电与抽水工况间转换的双馈变速抽水蓄能机组机电暂态模型。该模型不仅可以在稳态运行时实现有功无功解耦控制和最佳导叶开度及最优转速的跟踪,还可以平滑地实现发电工况和抽水工况下的转换过渡过程。基于Matlab/Simulink建立了双馈变速抽水蓄能机电暂态模型,以停机、发电、抽水等工况间转换等场景为例,仿真验证了所建模型的有效性和正确性。
JING Haoran, LI Jia, ZHAO Hongsheng, et al. Modeling and simulation of operating condition conversion of doubly-fed variable speed pumped storage[J]. Electric Power Construction, 2023, 44(10): 41-50.

Doubly-fed variable-speed pumped storage units have the advantages of a wide operating range and fast power regulation speed, combined with the optimal efficiency for power generation and pumping conditions. It is also characterized by multiple operating conditions and frequent switching of the operating conditions. However, the existing simulation modeling of doubly-fed variable-speed pumping storage focuses only on a single power generation or pumping condition, which does not fully reflect the characteristics and advantages of a variable-speed pumping storage unit with respect to its operating condition conversion. Therefore, an electromechanical transient model of a doubly-fed variable-speed pumped storage unit is established, which can be switched between the generation and pumping conditions. The model can not only realize active and reactive power decoupling control and tracking of the optimal vane opening and speed in steady-state operation but also smoothly realize the transition process between the power generation and pumping conditions. First, a doubly-fed variable-speed pumped-storage electromechanical transient model is established using MATLAB/Simulink. Second, a simulation method is proposed to realize the conversion of the variable-speed pumping storage between shutdown, power generation, and pumping conditions according to different active power dispatching objectives. Finally, simulation results verify the validity and accuracy of the proposed model.

[36]
SHI X L, RUAN G R, LU H Y, et al. Analysis of ultra-low frequency oscillation in hydro-dominant power system and suppression strategy by GPSS[J]. IEEE Transactions on Industry Applications, 2023, 59(3): 2796-2806.

基金

国家自然科学基金项目(U2166601)
南方电网科技项目(YNKJXM20220025)

编辑: 张小飞
PDF(2200 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/