PDF(5162 KB)
PDF(5162 KB)
PDF(5162 KB)
考虑电动汽车充电功率分段调节的主从博弈调度优化
Optimized Scheduling Under Master-Slave Game Considering Charging Power Segmental Regulation of Electric Vehicles
【目的】电动汽车(electric vehicles, EV)、分布式资源对推进“双碳”目标具有重要意义,微电网化的聚合博弈调度是有效调控形式之一。然而,现有调度策略大多忽视了EV有序充电的分段调节能力,这不仅阻碍了充电价格的进一步优化,也限制了充电负荷与分布式资源的灵活协同,影响了整体的经济与低碳效益。【方法】首先,建立了以微电网运营商为主体、分布式资源聚合商和EV聚合商为从体的调度框架,在考虑碳交易的同时,制定动态充电价格与聚合商售电价格。其次,设计了一种EV充电功率分段调节策略,在满足用户充电需求的前提下,能够灵活调节充电功率和时长。最后,针对分段调节导致的均衡博弈变量增加、计算速度下降等挑战,采用改进Kriging元模型求解,减少计算量并提高求解效率。【结果】仿真结果表明,在分段调节充电策略与动态充电价格的共同作用下,所提方法能够降低充电成本和聚合商运营成本,EV聚合商的运营成本降低了15.1%,与无序充电场景相比,所提方法的峰谷差率减小了11.6%,同时减少了EV充电带来的碳排放。【结论】通过分段调节方式优化充电功率,提升了EV并网期间的调节灵活性,在EV动态充电价格与分布式资源聚合商售电价格的作用下,实现EV与不同分布式资源的低碳互补优势,减少碳排放的同时达到良好的削峰填谷效果。
[Objective] Electric vehicles (EVs) and distributed resources are crucial for advancing “dual carbon” targets, with microgrid-based aggregated game scheduling representing one of the effective regulation forms. However, existing scheduling strategies mostly overlook the segmented regulation capability of orderly charging, hindering further optimization of charging prices and constraining flexible coordination between charging loads and distributed resources, thereby affecting the overall economic and low-carbon benefits. [Methods] First, we establish a scheduling framework with multi-agent aggregators as the leading entities and EVs as the following entities, formulating dynamic charging prices and aggregators’ electricity selling prices while considering carbon trading. Second, we design a segmented regulation strategy for EV charging power capable of flexibly adjusting the charging power and duration while satisfying the charging requirements of EV users. Finally, to address challenges such as increased equilibrium game variables and decreased computation speed resulting from segmented regulation, we adopt an improved Kriging meta-model for solving, reducing the computational load, and improving the solving efficiency. [Results] The simulation results show that the proposed method reduces charging and aggregation operating costs under the combined effect of the segmented adjustable charging strategy and dynamic charging price. The operating costs of the EV aggregators were reduced by 15.1%; moreover, the load peak-valley difference could also be optimized. Compared with the disorderly charging scenarios, the peak-valley difference rate of the proposed method was reduced by 11.6% while reducing the carbon emissions caused by EV charging. [Conclusions] The flexibility of EV grid connection adjustment was improved by optimizing the charging power through a segmented adjustment. The joint action of EV dynamic charging prices and distributed resource aggregator electricity prices helped realize the low-carbon complementary advantages of EV and different distributed resources, resulting in reduced carbon emissions while achieving good peak shaving and valley filling effects.
电动汽车 / 有序充电 / 充电成本 / 主从博弈 / 碳交易
electric vehicle / orderly charging / charging cost / master-slave game / carbon trading
| [1] |
魏泓屹, 卓振宇, 张宁, 等. 中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J]. 电力系统自动化, 2022, 46(19): 1-12.
|
| [2] |
|
| [3] |
李昊, 季振亚, 刘晓峰, 等. 基于综合可调度潜力评估的电动汽车优先调度策略[J]. 综合智慧能源, 2022, 44(11): 1-11.
在实现“双碳”目标的过程中,电动汽车的规模不断增大,其充放电对电网运行产生显著影响。考虑当前对单一电动汽车调度造成的控制指令下发数量较大的问题,分别从电动汽车侧与配电网侧2个角度,提出可调度能力评估指数与效益评估指数。构建电动汽车综合可调度潜力评估模型,对电动汽车群体划分优先调度区并下发指令,减少调度电动汽车的次数。为缓解电动汽车区域流动性给模型求解带来的困难,使用了一种以W-GAN以及 k-means聚类算法为基础的电动汽车分类方法。以3个削峰填谷算例为基础,分析了4个电动汽车群体的可调度潜力与调度效果。仿真结果表明,所提出的可调度能力评估指数、调度效益评估指数具有一定的合理性,且运用综合可调度潜力评估模型划分优先调度区可在较少调度电动汽车的情况下完成较好的削峰填谷效果。
The number of electric vehicles is mounting in the process of achieving "dual carbon" target. And their charging and discharging behaviours significantly impact the operation of power grid. In response to the numerous control instructions given to schedule every single electric vehicle(EV), considering from EV side and distribution network side, a dispatchable capacity assessment index and a benefit assessment index are proposed. And a comprehensive dispatchable potential assessment model for EVs is established. Then, EVs can be divided into different groups and those in dispatch priority zones will be given schedule instructions preferentially. To alleviate the difficulty brought by EV mobility between regions to the model solving, an EV grouping method based on W-GAN and k-means clustering algorithm is used. Based on three peak load regulation cases, the dispatchable potential and dispatch performance of four EV groups are analysed. The simulation results show that the dispatchable capacity assessment index and the dispatching benefit assessment index of the proposed method are reasonable. Giving scheduling priority to the divided EV dispatch priority zones selected by the integrated dispatchable potential assessment model can accomplish peak load regulation with less dispatching times. |
| [4] |
|
| [5] |
余岳, 魏玉强, 曾黎玉, 等. 基于时空能量博弈均衡的V2V-WPE能量交易研究[J]. 电力系统保护与控制, 2024, 52(24): 120-130.
|
| [6] |
周原冰, 龚乃玮, 王皓界, 等. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力, 2024, 57(10): 1-11.
|
| [7] |
侯慧, 何梓姻, 侯婷婷, 等. 大规模车网互动需求响应策略及潜力评估综述[J]. 电力系统保护与控制, 2024, 52(14): 177-187.
|
| [8] |
安佳坤, 杨书强, 王涛, 等. 电动汽车聚合下的微能源互联网优化调度策略[J]. 中国电力, 2023, 56(5): 80-88.
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
丁乐言, 柯松, 张帆, 等. 考虑出行需求和引导策略的电动汽车充电负荷预测[J]. 电力建设, 2024, 45(6): 10-26.
随着电动汽车逐步替代燃料汽车,电动汽车充电负荷对电网造成的影响也越来越大,为此提出了一种考虑出行需求与引导策略的电动汽车充电负荷时空分布预测方法。首先,基于路段通行时间模型建立划分功能区域的半动态交通网模型;进一步,建立电动汽车能耗模型,在分析电价、气候和季节等因素对车主出行需求影响的同时,对充电需求、半动态交通网模型、能耗模型以及传统出行链进行修正;然后,考虑外部因素影响下车主的有限理性,提出引导策略下私家车和出租车充电负荷预测方法;最后,在半动态交通网模型中用改进的出行链和起讫点(origin-destination, OD)矩阵分别模拟私家车和出租车研究时间内的出行行为,通过在划分区域的半动态交通网仿真,验证了所提出的电动汽车充电负荷时空分布预测方法的有效性。仿真结果也表明电动汽车充电负荷时空分布预测情况与对外部影响因素的分析相符,同时提出的引导策略能提升车主决策的满意程度。
With electric vehicles (EVs) gradually replacing fueled vehicles, the impact of their charging load on the power grid is increasing. Therefore, this study proposes a spatial-temporal distribution prediction method for the charging load of EVs that considers travel demand and a guidance strategy. First, a semi-dynamic traffic network model that divides functional areas was developed based on a road travel time model. Furthermore, an energy-consumption model of EVs was established, and the charging demand, semi-dynamic transportation network model, energy consumption model, and traditional travel chain were revised according to the influence of the electricity price, climate, and season on the travel demand of vehicle owners. Considering the limited rationality of vehicle owners based on the influence of external factors, a charging load prediction method for private cars and taxis based on a guidance strategy is proposed. Finally, the modified trip chain and OD matrix were used to simulate the travel behavior of private cars and taxis, respectively, in the semi-dynamic traffic network model during the study period, and the validity of the proposed prediction method was verified through a simulation experiment of the semi-dynamic traffic network in the divided regions. The results show that the spatial-temporal distribution of the charging load for EVs is consistent with the analysis of external influencing factors, and the proposed guidance strategy can improve the satisfaction of vehicle owners.
|
| [13] |
马艳红, 张炜函. 考虑充放电成本的V2G参与用户细分及激励机制研究[J]. 智慧电力, 2024, 52(5): 31-36, 51.
|
| [14] |
段小宇, 胡泽春, 崔岩, 等. 长时间尺度下的电动汽车有序充放电调度[J]. 电网技术, 2018, 42(12): 4037-4044.
|
| [15] |
许敏茹, 魏斌, 韩肖清. 计及差异化服务费定价的电动汽车聚合商两阶段调度策略[J]. 电力建设, 2023, 44(8): 95-106.
电动汽车(electric vehicle, EV)是极具调节潜力的需求侧资源,针对现货市场环境下的电动汽车聚合商(electric vehicle aggregator, EVA)整合和调度EV负荷资源的问题进行研究。首先,考虑EV的车-桩充电负荷差异化建立了EV充电模型。其次,以EVA运营收益最大为目标,兼顾EV车主利益,基于主从博弈关系建立EVA日前优化模型;模型基于场景的随机优化方法考虑市场日前电价的不确定性,解得差异化EV充电服务费价格和EVA日前购电计划。随后,基于能量共享模式对各类EV进行日内滚动优化调度,减小EV接入不确定性给EVA差额交易带来的额外成本。最后,以某市区电动汽车聚合商为案例开展分析,结果表明所提两阶段调度策略能有效应对EV接入不确定性与市场电价不确定性,实现EVA与EV双赢。
Electric vehicles (EVs) are promising demand-side regulation resources. This study examines the integration and scheduling of EV load resources considering electric vehicle aggregators (EVAs) in the spot market. First, the EV vehicle-pile charging load differentiation was considered to establish the EV charging model. Second, to maximize the EVA operating income, taking into account the interests of EV users simultaneously, an EVA day-ahead optimization model based on the Stackelberg game is established, and a scenario-based stochastic approach is used to consider the uncertainty of the electricity market price, gaining differentiated pricing results of the EV charging service fee and EVA day-ahead energy purchase plan. Subsequently, based on the energy-sharing mode, all types of EVs are dispatched via rolling optimization scheduling in real time to reduce the unplanned EVA power purchase cost caused by real-time market transactions owing to EV access uncertainty. Finally, considering an EVA in the distribution area as an example, the calculation results prove the effectiveness of the two-stage scheduling strategy proposed in this study, which can cope with the uncertainty of EV access and market price as well as realize a win-win situation between EVA and EV users. |
| [16] |
蔡国伟, 姜雨晴, 黄南天, 等. 电力需求响应机制下基于多主体双层博弈的规模化电动汽车充放电优化调度[J]. 中国电机工程学报, 2023, 43(1): 85-99.
|
| [17] |
王义, 靳梓康, 王要强, 等. 考虑电动汽车共享储能特性的园区综合能源系统低碳运行[J]. 电力系统自动化, 2024, 48(5): 21-29.
|
| [18] |
姜涛, 吴成昊, 李雪, 等. 考虑电动汽车充放电的输配协同能量-灵活性市场出清机制[J]. 电力系统自动化, 2024, 48(7): 210-224.
|
| [19] |
黄一诺, 郭创新, 王力成, 等. 考虑用户满意度的电动汽车分群调度策略[J]. 电力系统自动化, 2015, 39(17): 183-191.
|
| [20] |
|
| [21] |
|
| [22] |
王毅, 王飞宏, 侯兴哲, 等. 住宅区电动汽车充电负荷随机接入控制策略[J]. 电力系统自动化, 2018, 42(20): 53-58.
|
| [23] |
戴逢哲, 姜飞, 陈磊, 等. 价格-积分联合激励下考虑消费舒适度的居民需求响应优化策略[J]. 电网技术, 2024, 48(2): 819-833.
|
| [24] |
张良, 孙成龙, 蔡国伟, 等. 基于PSO算法的电动汽车有序充放电两阶段优化策略[J]. 中国电机工程学报, 2022, 42(5): 1837-1852.
|
| [25] |
陈先龙, 王秀丽, 陈洁, 等. 考虑分布式可再生能源交易的风电商与电动汽车充电站协同优化调度[J]. 电网技术, 2023, 47(11): 4598-4610.
|
| [26] |
魏韡, 陈玥, 刘锋, 等. 基于主从博弈的智能小区代理商定价策略及电动汽车充电管理[J]. 电网技术, 2015, 39(4): 939-945.
|
| [27] |
邱明石, 陈俊儒, 刘牧阳, 等. 考虑纳网系统和微网运营商电价机制的主从博弈优化调度策略[J]. 电力系统保护与控制, 2024, 52(19): 15-34.
|
| [28] |
章攀钊, 谢丽蓉, 马瑞真, 等. 考虑电动汽车集群可调度能力的多主体两阶段低碳优化运行策略[J]. 电网技术, 2022, 46(12): 4809-4825.
|
| [29] |
龚诚嘉锐, 林顺富, 边晓燕, 等. 基于多主体主从博弈的负荷聚合商经济优化模型[J]. 电力系统保护与控制, 2022, 50(2): 30-40.
|
| [30] |
刘又榕, 林顺富, 沈运帷, 等. 计及电动汽车参与多元需求响应的微电网多时间尺度优化调度模型[J]. 电力建设, 2023, 44(10): 51-62.
为深入挖掘电动汽车的可调度潜力,缓解含高比例新能源微电网的供能压力,结合多元需求响应技术,提出一种考虑电动汽车资源参与的微电网多时间尺度优化调度模型。在日前调度阶段,一部分电动汽车资源与价格型需求响应技术相结合,以用户的综合满意度为目标进行优化。微电网基于价格型电动汽车资源的调度计划,以经济低碳成本最低与灵活性满足度最大为目标进行优化,确定各侧可调资源的调度安排。在日内调度阶段,另一部分电动汽车资源与激励型需求响应技术相结合。微电网能量管理中心作为领导者,以运营成本最小为目标,激励型电动汽车群作为跟随者,以用电成本最小为目标,构建微电网日内主从博弈模型进行滚动优化,双方基于补贴价格与用能策略进行博弈。最后,基于某微电网场景进行仿真验证,结果表明所提模型能够降低用户用电成本,减少负荷曲线的峰谷差,实现新能源的全消纳。
To exploit the schedulable potential of electric vehicles (EVs) efficiently and relieve the energy supply pressure of microgrids with a high proportion of new energy sources, a multi-time-scale optimization scheduling model of the microgrid is proposed, considering the participation of EV resources combined with the multi-demand response technology. In the day-ahead scheduling stage, some EV resources are combined with the price-based demand response technology to optimize comprehensive user satisfaction. Based on the scheduling plan of the EV resources based on price, the microgrid is optimized focusing on minimizing economic cost, ensuring low-carbon expenditure, and maximizing flexibility satisfaction, and the scheduling arrangement of the adjustable resources on each side is determined. In the intra-day scheduling phase, another portion of the EV resources is combined with the incentive demand response technology. The microgrid energy management center, as the leader, aims to minimize the operating costs, and the incentive EV group, as the follower, aims to minimize the electricity costs. The intra-day master-slave game model of the microgrid was constructed for rolling optimization, and the two sides played the game based on a subsidized price and energy use strategy. Finally, a simulation verification was conducted based on a microgrid scenario, and the results show that the proposed model can reduce the electricity cost of users, reduce the peak-valley difference of the load curve, and realize the full absorption of new energy. |
| [31] |
房超运, 杨昆, 柴瑞环. 分时电价下含电动汽车的微电网群双层多目标优化调度[J]. 电力科学与技术学报, 2024, 39(1): 124-133.
|
| [32] |
邓慧琼, 张晓飞, 曾凡淦, 等. 动态分时电价机制下的电动汽车充放电调度策略研究[J]. 智慧电力, 2023, 51(3): 59-66, 78.
|
| [33] |
叶文浩, 陈耀红, 颜勤, 等. 基于动态分时电价引导的电动汽车需求侧响应[J]. 电力科学与技术学报, 2024, 39(4): 138-145.
|
| [34] |
李耐心, 文艺林, 杜鹏, 等. 配电网与电动汽车光储充电聚合商的协调互动策略[J]. 智慧电力, 2023, 51(12): 38-44.
|
| [35] |
帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J]. 电网技术, 2023, 47(2): 679-690.
|
| [36] |
陈中, 陆舆, 邢强, 等. 考虑电动汽车碳配额的电力系统调度分析[J]. 电力系统自动化, 2019, 43(16): 44-51.
|
| [37] |
顾欣, 王琦, 胡云龙, 等. 基于纳什议价的多微网综合能源系统分布式低碳优化运行策略[J]. 电网技术, 2022, 46(4): 1464-1482.
|
| [38] |
董雷, 涂淑琴, 李烨, 等. 基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理[J]. 电网技术, 2020, 44(3): 973-983.
|
| [39] |
刘俊, 王超, 陈津莼, 等. 基于博弈论的城镇能源互联网多市场主体收益模型[J]. 电力系统自动化, 2019, 43(14): 90-96, 104.
|
| [40] |
省发展改革委关于进一步完善分时电价机制有关事项的通知[EB/OL]. (2022-01-06)[2024-06-12]. http://fzggw.jiangsu.gov.cn/art/2022/1/6/art_51012_10305774.html.
|
| [41] |
省发展改革委细化落实“28条”优化完善电动汽车充换电设施用电价格政策[EB/OL].(2023-09-14)[2024-06-12]. http://fzggw.jiangsu.gov.cn/art/2023/9/14/art_285_11015076.html.
|
| [42] |
关于2020年光伏发电上网电价政策有关事项的通知(发改价格〔2020〕511号)[EB/OL]. (2020-04-02)[2024-06-12]. https://www.ndrc.gov.cn/xwdt/tzgg/202004/t20200402_1235942.html.
|
| [43] |
|
AI小编
/
| 〈 |
|
〉 |