PDF(3843 KB)
PDF(3843 KB)
PDF(3843 KB)
面向准线型需求响应的重卡换电站日前-实时优化调度方法
Day-Ahead Real-Time Optimal Scheduling Approach for Customer Directrix Load-Based Demand Response of Heavy-Duty Truck Battery Swapping Stations
【目的】针对重卡换电站(heavy-duty truck battery swapping stations,HTBSS)换电需求不确定性强且无法定义基线负荷,导致其调节贡献难以量化表征,阻碍了灵活性发挥的问题,提出面向准线型需求响应的重卡换电站运行模型与优化调度方法。【方法】首先,构建了基于荷电状态(state of charge,SOC)分类并考虑换电等待数量的重卡换电站运行模型,解决直接控制每组电池功率面临的决策空间过大、不确定性难描述等问题;其次,基于所构建的重卡换电站运行模型,提出重卡换电站参与准线型需求响应的日前优化模型,并进一步提出实时滚动优化方法以应对换电需求的不确定性。【结果】算例结果表明,所提模型在不同换电需求数量场景下均适用,同时通过所提日前-实时优化方法可有效跟踪准线并减少换电等待的数量。参与准线型需求响应后,重卡换电站与电网运营商可分别减少成本47.66%与65.52%,区域新能源弃电减少90.93%。【结论】所提方法可有效引导重卡换电站参与准线型需求响应,缓解运行过程中换电需求不确定性带来的影响;重卡换电站参与准线型需求响应,既可促进分布式新能源消纳,也可降低自身运营成本,实现网荷双赢。
[Objective] A day-ahead, real-time optimal scheduling approach for customer directrix load (CDL)-based demand response is proposed to address the problem of the strong uncertainty of the battery swapping demand and inability to define the baseline load of heavy-duty truck battery swapping stations (HTBSSs), which makes it difficult to characterize their regulation contribution quantitatively and hinders flexibility. [Methods] First, an operation model is constructed based on the classification of the state of charge and considering the number of trucks waiting for switching, which solves the problems of an excessively large strategy space and the difficulty in describing the uncertainty faced by directly controlling the power of each battery. Second, a day-ahead optimization model is proposed for the participation of HTBSSs in CDL-based demand response based on the constructed model, and a real-time rolling optimization method is presented to deal with the uncertainty of the swapping demand. [Results] Examples show that the proposed model is applicable to different swapping demand scenarios, and that the day-ahead and real-time optimization approach can effectively track the CDL and reduce the number of swapping waits. After participating in the CDL-based demand response, the HTBSS and grid operator can reduce the cost by 47.66% and 65.52%, respectively, and the regional renewable energy power abandonment can be reduced by 90.93%. [Conclusions] The proposed method can effectively guide HTBSSs to participate in CDL-based demand response and alleviate the impact of uncertainty of the battery swapping demand in the operation process. The participation of HTBSSs in CDL-based demand response can not only promote the consumption of distributed renewable energy, but also reduce their own operating costs, resulting in a win-win situation for the grid and load.
重卡换电站(HTBSS) / 需求响应 / 负荷准线 / 新能源消纳 / 优化调度
heavy-duty trucks battery swapping station (HTBSS) / demand response / customer directrix load / consumption of renewable energy / optimal scheduling
| [1] |
中国电力企业联合会. 2024年一季度全国电力供需形势分析预测报告[R/OL]. (2024-04-24)[2024-07-09]. https://www.cec.org.cn/detail/index.html?3-332293.
|
| [2] |
国家发展改革委国家能源局关于新形势下配电网高质量发展的指导意见[EB/OL]. (2024-02-06)[2024-07-09]. https://www.gov.cn/zhengce/zhengceku/202403/content_6935790.htm.
|
| [3] |
郭毅娜, 廖凯, 杨健维, 等. 兼顾配电网韧性提升的电动汽车换电站容量优化配置方法[J]. 电网技术, 2025, 49(2): 470-480.
|
| [4] |
胡号, 胡志坚, 李天格, 等. 基于“车-桩-站”交互的充换电站一体化实时调度策略[J/OL]. 中国电机工程学报, 1-13. (2024-06-24)[2024-12-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240621.1713.010.html.
|
| [5] |
陈浩, 熊萌, 杨洋. 电动重卡换电模式现状与发展趋势[J]. 时代汽车, 2024(7): 100-102.
|
| [6] |
王利军, 梁承东, 李貌, 等. 电动重卡换电技术研究现状与发展[J]. 中国汽车, 2024, 34(4): 8-12.
|
| [7] |
王琼, 邹晴, 李乐, 等. 考虑用户动态充电需求的充电站选址定容优化[J]. 浙江电力, 2024, 43(9): 10-18.
|
| [8] |
宣羿, 樊立波, 孙智卿, 等. 考虑低碳交通的电动汽车充电站优化配置方法[J]. 浙江电力, 2024, 43(6): 69-79.
|
| [9] |
|
| [10] |
顾金辉. 电动重卡换电站规划与配置方法的研究[D]. 北京: 华北电力大学, 2023.
|
| [11] |
|
| [12] |
赵显秋, 徐青山, 杨永标, 等. 考虑不确定性的新型电池充换电站多时间尺度能量管理策略[J]. 电网技术, 2025, 49(3): 1007-1017.
|
| [13] |
李翼成, 赵钰婷, 崔杨, 等. 考虑充放电策略的换电站与风电-碳捕集虚拟电厂的低碳经济调度[J]. 电力自动化设备, 2023, 43(6): 27-36.
|
| [14] |
刘灵恺, 雷霞, 李竹, 等. 电动汽车换电站可用电池组数动态调度策略[J]. 电工技术学报, 2017, 32(22): 242-250.
|
| [15] |
沈筱琦, 方鑫, 谭林林, 等. 基于居民出行模拟的电动汽车负荷时空分布预测[J]. 电力工程技术, 2024, 43(3): 130-139.
|
| [16] |
范宏, 李嘉晖, 郭琦. 考虑用户充电决策行为的电动汽车充电引导策略[J]. 电力工程技术, 2023, 42(4): 23-30.
|
| [17] |
崔景淏, 张怡, 张执超, 等. 路径规划下考虑电池损耗的纯电重卡集群充电负荷时空分布预测[J/OL]. 电力建设, 1-13. (2024-06-12) [2024-12-01]. http://kns.cnki.net/kcms/detail/11.2583.TM.20240611.1728.002.html.
|
| [18] |
张齐东, 黄学良, 陈中, 等. 电动汽车电池更换站集群充电控制策略研究[J]. 电工技术学报, 2015, 30(12): 447-453.
|
| [19] |
程飞, 郭春林, 高泽阳, 等. 参与电网削峰调节的电动重卡换电站调度策略[J]. 电力系统自动化, 2024, 48(9): 120-128.
|
| [20] |
孟乡占, 米增强, 王吉兴, 等. 计及变速充电机制的含光伏换电站经济优化调度模型[J]. 浙江电力, 2022, 41(1): 35-41.
|
| [21] |
黄敏丽, 于艾清. 基于改进布谷鸟算法的电动汽车换电站有序充电策略研究[J]. 中国电机工程学报, 2018, 38(4): 1075-1083, 1284.
|
| [22] |
|
| [23] |
刘达夫, 钟剑, 杨祺铭, 等. 基于V2G与应急通信的配电网信息物理协同快速恢复方法[J]. 电力系统自动化, 2024, 48(7): 147-158.
|
| [24] |
杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
|
| [25] |
郝子霖, 于华楠, 冷贤达, 等. 基于电动汽车激励策略的主动配电网日前优化调度[J]. 电网与清洁能源, 2024, 40(11): 129-137.
|
| [26] |
周原冰, 龚乃玮, 王皓界, 等. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力, 2024, 57(10): 1-11.
|
| [27] |
骆钊, 聂灵峰, 田肖, 等. 结合车主期望的充换电站辅助调频策略[J]. 电力系统保护与控制, 2024, 52(13): 90-101.
|
| [28] |
侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46(15): 46-55.
|
| [29] |
于昊正, 赵寒杰, 李科, 等. 计及需求响应的分布式光伏集群承载能力评估[J]. 电力建设, 2023, 44(2): 122-131.
针对传统配电网分布式光伏承载能力评估方法中未考虑光伏集群的问题,构建了一种以光伏集群为评估单元的承载能力双层评估模型。模型外层通过价格弹性系数描述负荷需求变化,以售电商收益最大为目标优化分时电价,采用粒子群优化(particle swarm optimization,PSO)算法进行求解。内层以不往主网反送电作为指标,考虑电压偏差和设备热稳定约束,提出灵敏度排序方法求取光伏承载能力。在我国某县域实际配电网中求取了配电网光伏集群的承载能力,验证了所提模型和算法的有效性。
Aiming at the problem that photovoltaic clusters are not considered in the traditional evaluation method of carrying capacity of distribution network for distributed photovoltaic power, a two-layer model of carrying capacity with photovoltaic clusters as the evaluation unit is constructed. In the outer layer of the model, PSO algorithm is used to describe the change of load demand through price elasticity coefficient, and the time-of-use price is optimized with the goal of maximizing the income of E-seller. In the inner layer, taking no reverse power transmission to the main network as the index, considering the voltage deviation and equipment thermal stability constraints, a sensitivity ranking method is proposed to calculate the carrying capacity for photovoltaic power. In the actual distribution network of a county in China, the impact of a single photovoltaic cluster on the carrying capacity of the distribution network is calculated, and the carrying capacity of the distribution network for the photovoltaic cluster is calculated to verify the effectiveness of the proposed model and algorithm. |
| [30] |
范帅, 郏琨琪, 王芬, 等. 基于负荷准线的大规模需求响应[J]. 电力系统自动化, 2020, 44(15): 19-27.
|
| [31] |
|
| [32] |
|
| [33] |
杨景旭, 唐渊, 姚蓝霓, 等. 考虑服务能力和削峰任务约束的换电站削峰方法[J]. 电力系统自动化, 2022, 46(15): 29-36.
|
| [34] |
张颖, 容展鹏, 张宇雄, 等. 计及运营特性的电动汽车换电站时空双层调度[J]. 电网技术, 2016, 40(9): 2616-2623.
|
| [35] |
杨祺铭, 季陈林, 刘友波, 等. 多条公交线路的光储充电站日内滚动优化策略[J]. 智慧电力, 2020, 48(8): 44-50, 90.
|
| [36] |
孙海龙. 电动汽车换电站的能力规划与充电策略研究[D]. 广州: 华南理工大学, 2017.
|
| [37] |
郭云鹏, 叶夏明, 赵俊华, 等. 电动汽车大型充换电站通信网络性能评估[J]. 电力建设, 2017, 38(1): 23-30.
电动汽车充换电站的自动化程度与其通信网络的性能密切相关,良好的网络性能是数据得以及时传输从而保障实现自动控制和管理功能的前提。因此大型充换电站通信网络中数据传输的特性以及网络性能值得深入研究。首先,对充换电站通信网络中的各类数据进行了详细的分析和建模;然后,针对网络中数据是否设置优先级的情况,利用OPNET软件进行了仿真并得出了一系列结论。计算结果表明,对各类数据设置不同的优先级有助于重要数据局的及时传输;传输较高码率视频数据的场合对网络带宽的要求更高,有可能需要另建通信网络来专门传输视频数据。
The automation degree of charging and swapping station of electric vehicles is bounded up with the performance of its communication network. A well-performed communication network is the precondition of transmitting data in time and implementing the functions of automatic control and management. Therefore, the data transmission characteristics in the communication network of large-scale charging and swapping station and the communication performance are worthly studied. Firstly, this paper analyzes and models various data in communication network of charging and swapping station in detail. Then, aiming at the condition whether the data in the network sets priority, this paper carries out numerical simulations with using software OPNET and obtains a series of conclusion. The simulation results show that setting priority tags for different kinds of data is helpful for guaranteeing the reliable transmission of important data. Moreover, if the code rate of video monitoring data is high, a communication network with a broader bandwidth or even a proprietary network for these data only may be demanded.<div> </div>
|
| [38] |
张轶炫, 田志曈, 杨博超, 等. 考虑动态增容受限的光伏反向过载台区滚动优化策略研究[J]. 高电压技术, 2024, 50(12): 5563-5573.
|
| [39] |
黄奇峰, 方凯杰, 黄艺璇, 等. 面向台区虚拟增容的需求侧资源多目标优化调度方法[J]. 供用电, 2023, 40(11): 61-68.
|
| [40] |
陈艳波, 田昊欣, 刘宇翔, 等. 计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J]. 中国电机工程学报, 2025, 45(5): 1752-1767.
|
| [41] |
李进鑫, 张沛超, 赵建立, 等. 基于负荷准线的5G基站虚拟电厂优化控制方法[J]. 电网技术, 2024, 48(6): 2356-2365.
|
AI小编
/
| 〈 |
|
〉 |