适用于高压直流换流站的高压大容量有源滤波器技术

王玲, 马为民, 季一鸣, 李明, 吴方劼, 徐莹, 杜晓磊, 张秀娟

电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 121-133.

PDF(8237 KB)
PDF(8237 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (6) : 121-133. DOI: 10.12204/j.issn.1000-7229.2025.06.010
智能电网

适用于高压直流换流站的高压大容量有源滤波器技术

作者信息 +

High-Voltage High-Capacity Active Filter Technology for High Voltage DC Converter Station

Author information +
文章历史 +

摘要

【目的】高压直流输电技术是我国资源优化配置的核心技术手段,传统高压直流输电技术存在占地面积大、交流系统变化容易谐振等诸多缺陷。为了适应大规模新能源接入电网结构的变化,开展高压直流输电工程的高压换流站用有源滤波器技术研究至关重要,一方面能够解决传统无源滤波器的固有缺陷,另一方面能够适应当前交流电网的波动性变化。【方法】基于此,从拓扑结构、工作原理、方案设计、工程应用等多方面开展了研究,提出了高压大容量有源滤波器的稳态参数设计、控制策略方案以及多台有源滤波器的协调控制方法等,并通过多种仿真方式进行验证,充分论证了高压大容量有源滤波器的谐波滤除和无功补偿能力以及对系统无功支撑的能力。【结果】研究结果表明,高压大容量有源滤波器能够提升传统直流对于弱交流系统的适应性,改善谐波特性,优化换流站布置,同时有力支撑交流系统强度。【结论】高压大容量有源滤波器的研发应用为未来新型电力系统发展背景下的直流输电工程系统设计提供了必要的指导。

Abstract

[Objective] High-voltage direct current transmission technology is a core technical method for optimizing resource allocation in China. Traditional high-voltage direct-current transmission technology has many drawbacks, such as a large footprint and easily changing AC system resonance. Development of active filter technology for high-voltage converter stations is crucial in high-voltage direct-current transmission projects for adapting to the changes in the grid structure brought about by large-scale new energy access. This technology would solve the inherent defects of traditional passive filters and enable adaptation to the fluctuations in the current AC power grid. [Methods] This study was conducted from the multiple aspects of topology structure, working principle, scheme design, and engineering applications. A coordinated control method of multiple active filters is proposed for high-voltage and large-capacity active filters along with a steady-state parameter design and control strategy scheme, and further verified through various simulation methods, fully demonstrating the harmonic filtering and reactive power compensation capabilities of high-voltage and large-capacity active filters and their ability to support reactive power in the system. [Results] The results indicate that high-voltage high-capacity active filters can enhance the adaptability of traditional DC to weak AC systems, improve harmonic characteristics, optimize the converter station layout, and effectively support the strength of AC systems. [Conclusions] The research and application of high-voltage and high-capacity active filters provide the necessary guidance for the design of DC transmission engineering systems in the context of future development of new power systems.

关键词

高压有源滤波器 / 特高压直流输电 / 换相失败 / 无功补偿 / 谐波补偿 / 暂态补偿

Key words

high-voltage active filter / ultra high voltage direct current transmission / commutation failure / reactive power compensation / harmonic compensation / transient compensation

引用本文

导出引用
王玲, 马为民, 季一鸣, . 适用于高压直流换流站的高压大容量有源滤波器技术[J]. 电力建设. 2025, 46(6): 121-133 https://doi.org/10.12204/j.issn.1000-7229.2025.06.010
WANG Ling, MA Weimin, JI Yiming, et al. High-Voltage High-Capacity Active Filter Technology for High Voltage DC Converter Station[J]. Electric Power Construction. 2025, 46(6): 121-133 https://doi.org/10.12204/j.issn.1000-7229.2025.06.010
中图分类号: TM46   

参考文献

[1]
王伟胜. 我国新能源消纳面临的挑战与思考[J]. 电力设备管理, 2021(1): 22-23.
WANG Weisheng. China’s challenges and considerations regarding new energy consumption[J]. Electric Power Equipment Management, 2021(1): 22-23.
[2]
周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[3]
LUO A, TANG C, SHUAI Z K, et al. A novel three-phase hybrid active power filter with a series resonance circuit tuned at the fundamental frequency[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2431-2440.
[4]
杨兴武, 雷彪, 欧阳武, 等. 单相H桥级联型APF模型预测控制方法研究[J]. 电网技术, 2017, 41(3): 962-968.
YANG Xingwu, LEI Biao, OUYANG Wu, et al. Model predictive control of single-phase cascaded H-bridge active power filter[J]. Power System Technology, 2017, 41(3): 962-968.
[5]
SHORE N L, ANDERSSON G, CANELHAS A P, et al. A three-pulse model of DC side harmonic flow in HVDC systems[J]. IEEE Transactions on Power Delivery, 1989, 4(3): 1945-1954.
[6]
DICKMANDER D L, PETERSON K J. Analysis of DC harmonics using the three-pulse model for the intermountain power project HVDC transmission[J]. IEEE Power Engineering Review, 1989, 9(4): 79-80.
[7]
邓佳, 李泽文. 有源电力滤波器研究现状综述[J]. 电工材料, 2023(5): 35-39.
DENG Jia, LI Zewen. A review of the research status of active power filters[J]. Electrical Engineering Materials, 2023(5): 35-39.
[8]
李维臻. 一种新的基于瞬时无功功率理论的谐波电流检测算法[J]. 电气自动化, 2013, 35(5): 67-69.
LI Weizhen. A new harmonic current detection algorithm based on instantaneous reactive power theory[J]. Electrical Automation, 2013, 35(5): 67-69.
[9]
王峰, 张旭隆, 曹言敬. 改进同步谐波检测法在有源电力滤波器中的应用[J]. 电气自动化, 2023, 45(4): 94-97.
WANG Feng, ZHANG Xulong, CAO Yanjing. Application of improved synchronous harmonic detection method in APF[J]. Electrical Automation, 2023, 45(4): 94-97.
[10]
叶宗彬, 侯波, 张延澳, 等. 一种三相对称系统快速谐波检测算法[J]. 电工技术学报, 2023, 38(2): 510-522.
YE Zongbin, HOU Bo, ZHANG Yan’ao, et al. A fast harmonic detection algorithm for three-phase symmetric systems[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 510-522.
[11]
苟家喜, 房占凯, 陈果, 等. 有源电力滤波器中基于M57962AL的IGBT驱动与保护设计[J]. 自动化与仪器仪表, 2023(6): 261-263.
GOU Jiaxi, FANG Zhankai, CHEN Guo, et al. Design of IGBT drive and protection based on M57962AL in active power filter[J]. Automation & Instrumentation, 2023(6): 261-263.
[12]
张国澎, 周犹松, 郑征, 等. 有源电力滤波器指定次谐波补偿优化限流策略研究[J]. 电力系统保护与控制, 2018, 46(16): 46-53.
ZHANG Guopeng, ZHOU Yousong, ZHENG Zheng, et al. Research on current-limiting optimization strategy for specific harmonic compensation of active power filter[J]. Power System Protection and Control, 2018, 46(16): 46-53.
[13]
张俊敏, 田微. 基于瞬时无功功率理论谐波检测方法的研究[J]. 电力系统保护与控制, 2008, 36(18): 33-36.
ZHANG Junmin, TIAN Wei. Study on harmonic detection methods based on instantaneous reactive power theory[J]. Power System Protection and Control, 2008, 36(18): 33-36.
[14]
周远翔, 陈健宁, 张灵, 等. “双碳” 与“新基建” 背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396-2408.
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High Voltage Engineering, 2021, 47(7): 2396-2408.
[15]
袁志昌, 郭佩乾, 刘国伟, 等. 新能源经柔性直流接入电网的控制与保护综述[J]. 高电压技术, 2020, 46(5): 1460-1475.
YUAN Zhichang, GUO Peiqian, LIU Guowei, et al. Review on control and protection for renewable energy integration through VSC-HVDC[J]. High Voltage Engineering, 2020, 46(5): 1460-1475.
[16]
李建林, 赵栋利, 赵斌, 等. 载波相移SPWM级联H型变流器及其在有源电力滤波器中的应用[J]. 中国电机工程学报, 2006, 26(10): 109-113.
LI Jianlin, ZHAO Dongli, ZHAO Bin, et al. Cascade H-bridge converter with carrier phase shifted SPWM technique and its application in active power filter[J]. Proceedings of the CSEE, 2006, 26(10): 109-113.
[17]
周泓宇, 姚伟, 李程昊, 等. 一种可降低首次换相失败风险的预测型低压限流控制[J]. 高电压技术, 2022, 48(8): 3179-3189.
ZHOU Hongyu, YAO Wei, LI Chenghao, et al. A predictive voltage dependent current order limiter with the ability to reduce the risk of first commutation failure of HVDC[J]. High Voltage Engineering, 2022, 48(8): 3179-3189.
[18]
张茂松, 池帮秀, 李家旺, 等. 有源电力滤波器基于准比例谐振的电流协调控制策略研究[J]. 电网技术, 2019, 43(5): 1614-1623.
ZHANG Maosong, CHI Bangxiu, LI Jiawang, et al. Study on quasi-PR current coordinated control for active power filter[J]. Power System Technology, 2019, 43(5): 1614-1623.
[19]
HERMAN L, PAPIC I, BLAZIC B. A proportional-resonant current controller for selective harmonic compensation in a hybrid active power filter[J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2055-2065.
[20]
李双健, 杜夏冰, 贾秀芳, 等. 一种应用于LCC高压直流输电的级联H桥混合型有源滤波器[J]. 电网技术, 2021, 45(4): 1409-1416.
LI Shuangjian, DU Xiabing, JIA Xiufang, et al. A cascaded H-bridge hybrid active power filter applied to LCC-HVDC[J]. Power System Technology, 2021, 45(4): 1409-1416.
[21]
马为民, 王玲, 李明, 等. 新型电力系统中的特高压直流输电SLCC换流技术[J]. 高电压技术, 2022, 48(12): 4941-4948.
MA Weimin, WANG Ling, LI Ming, et al. SLCC converter technology of UHVDC transmission in new power system[J]. High Voltage Engineering, 2022, 48(12): 4941-4948.
[22]
浙江大学发电教研组直流输电科研组. 直流输电[M]. 北京: 水力电力工业出版社, 1985: 16-17.
[23]
陶瑜. 直流输电控制保护系统分析及应用[M]. 北京: 中国电力出版社, 2015: 75-79.

基金

国家自然科学基金项目(51537009)
湖北省重点研发计划项目(2020BAA022)
中国博士后创新人才支持计划(BX2021224)
国家重点研发计划项目“±1100 kV直流输电关键技术研究与示范”(SQ2016YFGX100064)
国家电网公司科技项目(B3441417K006)

编辑: 景贺峰
PDF(8237 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/