计及不确定相关性的多能微电网数据驱动分布鲁棒优化调度

李佳玮, 孙庆贺, 王琼, 叶宇剑, 胡恒, 张曦

电力建设 ›› 2025, Vol. 46 ›› Issue (8) : 22-33.

PDF(2163 KB)
PDF(2163 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (8) : 22-33. DOI: 10.12204/j.issn.1000-7229.2025.08.003
源网荷储新型配电系统规划运行关键技术·栏目主持:董旭柱、尚磊、李红军·

计及不确定相关性的多能微电网数据驱动分布鲁棒优化调度

作者信息 +

Multi-Energy Microgrid Data-Driven Distributionally Robust Optimization Dispatch Considering Uncertainty Correlation

Author information +
文章历史 +

摘要

【目的】多能源微电网(multi-energy microgrid,MEMG)能够整合多种能量载体,实现更高的能源效率,助力实现“双碳”目标。【方法】文章提出了一种考虑不确定相关性与异常数据的MEMG数据驱动分布鲁棒优化调度方法。首先,基于Copula函数,提出了一种考虑不确定性相关性的模糊集,并基于此模糊集和机会约束,建立了考虑不确定性相关性的MEMG分布鲁棒机会约束优化调度模型;然后,由于分布鲁棒优化模型无法直接求解,文章基于对偶理论、McCormick松弛、条件风险价值近似,推导出所提模糊集中的最坏情况转化方法,从而将分布鲁棒模型转化为线性确定性模型,以便采用求解器高效求解;最后,提出了一种样本修剪算法,该算法通过迭代计算,生成剔除异常数据和极端数据的原始数据集子样本,以排除数据样本中异常值和极端值对分布鲁棒机会约束调度结果的负面影响;【结果】案例仿真表明,文章所提的分布鲁棒模型方法能够有效剔除模糊集中的不切实际分布,将样本外成本降低8.16%;所提样本修剪算法能够有效剔除样本中异常值和极端值,将样本外成本进一步降低3.33%。【结论】文章所提方法在保证可靠性的同时提升调度经济性,具有明显的优越性。

Abstract

[Objective] Multi-energy microgrids(MEMGs)can integrate multiple energy carriers to improve energy efficiency,thereby contributing to the achievement of "dual carbon" goals. [Methods] This study proposes a data-driven distributionally robust optimization scheduling method for MEMGs that considers uncertainty correlations and outlier data. First,an ambiguity set incorporating uncertainty correlations is introduced using the copula function. A distributionally robust optimization scheduling model with opportunity constraints is then formulated,integrating the ambiguity set and opportunity constraints to address the uncertainty correlations. Second,because the distributionally robust optimization model cannot be solved directly,a worst-case transformation method is derived for the proposed ambiguity set using dual theory,McCormick relaxation,and conditional value-at-risk approximation. This transforms the distributionally robust model into a linear deterministic model,thereby enabling an efficient solution using optimization solvers. Finally,a sample-pruning algorithm is proposed,which iteratively generates subsamples from the original dataset by removing the outliers and extreme data points. This approach mitigates the adverse effects of such data on distributionally robust opportunity constraint scheduling results. [Results] Case simulations demonstrate that the proposed distributionally robust model effectively eliminates unrealistic distributions in the ambiguity set,resulting in an 8.16% reduction in out-of-sample costs. The proposed sample-pruning algorithm further reduces the out-of-sample costs by 3.33%. [Conclusions] The proposed method enhances the scheduling efficiency and ensures reliability,which collectively demonstrates its superiority.

关键词

多能微电网 / 分布鲁棒优化 / 不确定相关性 / 机会约束 / 数据驱动

Key words

multi-energy microgrid / distributionally robust optimization / uncertainty correlation / chance constraints / data-driven

引用本文

导出引用
李佳玮, 孙庆贺, 王琼, . 计及不确定相关性的多能微电网数据驱动分布鲁棒优化调度[J]. 电力建设. 2025, 46(8): 22-33 https://doi.org/10.12204/j.issn.1000-7229.2025.08.003
LI Jiawei, SUN Qinghe, WANG Qiong, et al. Multi-Energy Microgrid Data-Driven Distributionally Robust Optimization Dispatch Considering Uncertainty Correlation[J]. Electric Power Construction. 2025, 46(8): 22-33 https://doi.org/10.12204/j.issn.1000-7229.2025.08.003
中图分类号: TM73   

参考文献

[1]
LU S, GU W, MENG K, et al. Economic dispatch of integrated energy systems with robust thermal comfort management[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1): 222-233.
[2]
张世旭, 李姚旺, 刘伟生, 等. 面向微电网群的云储能经济-低碳-可靠多目标优化配置方法[J]. 电力系统自动化, 2024, 48(1): 21-30.
ZHANG Shixu, LI Yaowang, LIU Weisheng, et al. Economic, low-carbon and reliable multi-objective optimal configuration method of cloud energy storage for microgrid clusters[J]. Automation of Electric Power Systems, 2024, 48(1): 21-30.
[3]
杨昆, 刘通, 柏林, 等. 基于谈判博弈的微电网群多主体共享储能容量优化配置策略[J]. 电测与仪表, 2024, 61(3): 33-41.
YANG Kun, LIU Tong, BAI Lin, et al. Optimal configuration strategy of shared energy storage capacity for micro-grid cluster based on multi-party bargaining game[J]. Electrical Measurement & Instrumentation, 2024, 61(3): 33-41.
[4]
郝元钊, 吴豫, 苗福丰, 等. 基于不动点映射的多微网与配电网主从博弈定价策略及均衡求解方法[J]. 电测与仪表, 2023, 60(11): 37-44.
HAO Yuanzhao, WU Yu, MIAO Fufeng, et al. Fixed point mapping-based master-slave game pricing strategy and equilibrium solution method for distribution networks with multi-microgrids[J]. Electrical Measurement & Instrumentation, 2023, 60(11): 37-44.
[5]
曾振松, 郑洁云, 魏鑫, 等. 微电网的氢-氨混合储能系统容量优化配置研究[J]. 广东电力, 2024, 37(7): 42-49.
ZENG Zhensong, ZHENG Jieyun, WEI Xin, et al. Research on capacity optimization configuration of hydrogen-ammonia hybrid storage system in microgrid[J]. Guangdong Electric Power, 2024, 37(7): 42-49.
[6]
颜玉林, 张籍, 刘洋, 等. 基于一体式再生燃料电池的并网型微电网系统建模及分析[J]. 广东电力, 2023, 36(9): 43-50.
YAN Yulin, ZHANG Ji, LIU Yang, et al. Modeling and analysis of grid-connected microgrid system based on unitized regenerative fuel cells[J]. Guangdong Electric Power, 2023, 36(9): 43-50.
[7]
李嘉丰, 王莹, 程晓绚, 等. 基于双层优化的微电网系统光储容量配置方法[J]. 分布式能源, 2024, 9(1): 80-88.
LI Jiafeng, WANG Ying, CHENG Xiaoxuan, et al. Configuration method of photovoltaic storage capacity in microgrid system based on bi-layer optimization[J]. Distributed Energy, 2024, 9(1): 80-88.
[8]
高赐威, 陈彦, 石坤, 等. 基于潮流分布识别的园区微电网型虚拟电厂间分布式电力交易[J]. 供用电, 2024, 41(8): 112-119.
GAO Ciwei, CHEN Yan, SHI Kun, et al. Distributed power transaction between park microgrid-type virtual power plants based on power flow distribution identification[J]. Distribution & Utilization, 2024, 41(8): 112-119.
[9]
李子凯, 杨波, 周忠堂, 等. 基于强化学习算法的微电网优化策略[J]. 山东电力技术, 2024, 51(6): 27-35.
LI Zikai, YANG Bo, ZHOU Zhongtang, et al. Optimization strategy for microgrid based on reinforcement learning algorithm[J]. Shandong Electric Power, 2024, 51(6): 27-35.
[10]
林泽源, 王宗尧, 张凡, 等. 考虑氢能应用的光伏直流微电网中储能容量配置寻优方法研究[J]. 高压电器, 2024, 60(7): 78-87.
LIN Zeyuan, WANG Zongyao, ZHANG Fan, et al. Research on optimization method for energy storage capacity configuration in photovoltaic DC micro grid considering hydrogen energy application[J]. High Voltage Apparatus, 2024, 60(7): 78-87.
[11]
李翔宇, 黎东阳, 张正江, 等. 孤岛微电网系统的混合控制策略及动态滤波技术研究[J]. 全球能源互联网, 2024, 7(3): 336-347.
LI Xiangyu, LI Dongyang, ZHANG Zhengjiang, et al. Research on hybrid control strategy and dynamic filtering technology for islanded microgrid system[J]. Journal of Global Energy Interconnection, 2024, 7(3): 336-347.
[12]
李鸿, 朱继忠, 董瀚江. 考虑协变量因素的多能微电网两阶段分布鲁棒优化调度[J]. 中国电机工程学报, 2025, 45(3): 822-834.
LI Hong, ZHU Jizhong, DONG Hanjiang. Two-stage distributionally robust optimization scheduling for multi-energy microgrid considering covariate factors[J]. Proceedings of the CSEE, 2025, 45(3): 822-834.
[13]
LI Y, HAN M, SHAHIDEHPOUR M, et al. Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response[J]. Applied Energy, 2023, 335: 120749.
[14]
YANG L, LI H, ZHANG H C, et al. Stochastic-distributionally robust frequency-constrained optimal planning for an isolated microgrid[J]. IEEE Transactions on Sustainable Energy, 2024, 15(4): 2155-2169.
[15]
LIU H, FAN Z G, XIE H M, et al. Distributionally robust joint chance-constrained dispatch for electricity-gas-heat integrated energy system considering wind uncertainty[J]. Energies, 2022, 15(5): 1796.
[16]
MOHAJERIN ESFAHANI P, KUHN D. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations[J]. Mathematical Programming, 2018, 171(1): 115-166.
[17]
ARRIGO A, ORDOUDIS C, KAZEMPOUR J, et al. Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: an exact and physically-bounded formulation[J]. European Journal of Operational Research, 2022, 296(1): 304-322.
[18]
LI B W, JIANG R W, MATHIEU J L. Integrating unimodality into distributionally robust optimal power flow[J]. TOP, 2022, 30(3): 594-617.
[19]
ESTEBAN-PÉREZ A, MORALES J M. Partition-based distributionally robust optimization via optimal transport with order cone constraints[J]. 4OR, 2022, 20(3): 465-497.
[20]
ARRIGO A, KAZEMPOUR J, DE GRÈVE Z, et al. Enhanced Wasserstein distributionally robust OPF with dependence structure and support information[C]// 2021 IEEE Madrid PowerTech. IEEE, 2021: 1-6.
[21]
XIA X, PAN X Z, LI N, et al. GAN-based anomaly detection: a review[J]. Neurocomputing, 2022, 493: 497-535.
[22]
WANG H Z, BAH M J, HAMMAD M. Progress in outlier detection techniques: a survey[J]. IEEE Access, 2019, 7: 107964-108000.
Detecting outliers is a significant problem that has been studied in various research and application areas. Researchers continue to design robust schemes to provide solutions to detect outliers efficiently. In this survey, we present a comprehensive and organized review of the progress of outlier detection methods from 2000 to 2019. First, we offer the fundamental concepts of outlier detection and then categorize them into different techniques from diverse outlier detection techniques, such as distance-, clustering-, density-, ensemble-, and learning-based methods. In each category, we introduce some state-of-the-art outlier detection methods and further discuss them in detail in terms of their performance. Second, we delineate their pros, cons, and challenges to provide researchers with a concise overview of each technique and recommend solutions and possible research directions. This paper gives current progress of outlier detection techniques and provides a better understanding of the different outlier detection methods. The open research issues and challenges at the end will provide researchers with a clear path for the future of outlier detection methods.
[23]
ZHAI R, DAN C, KOLTER Z, et al. DORO: distributional and outlier robust optimization[C]// International Conference on Machine Learning. PMLR, 2021: 12345-12355.
[24]
JIANG N, XIE W. DFO: a framework for data-driven decision-making with endogenous outliers[J/OL]. Optimization-Online, 2021. [2024-10-10]. https://api.semanticscholar.org/CorpusID:253481421.
[25]
RAHIMIAN H, BAYRAKSAN G, HOMEM-DE-MELLO T. Identifying effective scenarios in distributionally robust stochastic programs with total variation distance[J]. Mathematical Programming, 2019, 173(1): 393-430.
[26]
LI Y, SHEN X J. Anomaly detection and classification method for wind speed data of wind turbines using spatiotemporal dependency structure[J]. IEEE Transactions on Sustainable Energy, 2023, 14(4): 2417-2431.
[27]
ZHAI J Y, WANG S, GUO L, et al. Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid[J]. Applied Energy, 2022, 326: 119939.
[28]
ZHAI J Y, JIANG Y N, SHI Y M, et al. Distributionally robust joint chance-constrained dispatch for integrated transmission-distribution systems via distributed optimization[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2132-2147.
[29]
MITSOS A, CHACHUAT B, BARTON P I. McCormick-based relaxations of algorithms[J]. SIAM Journal on Optimization, 2009, 20(2): 573-601.
[30]
ARRIGO A, KAZEMPOUR J, DE GRÈVE Z, et al. Embedding dependencies between wind farms in distributionally robust optimal power flow[J]. IEEE Transactions on Power Systems, 2023, 38(6): 5156-5169.

基金

国家电网公司科技项目(5700-202311602A-3-2-ZN)
江苏省基础研究计划自然科学基金项目(BK20220842)

编辑: 魏希辉
PDF(2163 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/