PDF(4702 KB)
PDF(4702 KB)
PDF(4702 KB)
高比例可再生能源电力系统惯量预测方法研究综述
A Review of Inertia Prediction Methods for Power System with High Penetration Renewable Energy Sources
【目的】惯量预测对于频率控制、管理可再生能源渗透、快速频率响应分析以及综合惯量设计电力辅助服务市场等都至关重要。随着高比例可再生能源发电的接入和传统可控发电机组占比的下降,对系统惯量水平进行预测变得更加复杂。文章对高比例可再生能源电力系统中惯量预测的必要性、挑战及最新进展进行了全面概述。【方法】首先,回顾了不同时期电力系统的惯量构成及惯量预测方法的发展,分析开展惯量预测工作的必要性和难点。进而,给出了高比例可再生能源电力系统惯量预测方法的研究框架,依据应用场景和时间尺度,将惯量预测方法划分为基于统计法的惯量预测和基于数据驱动法的惯量预测,并进行分类阐述。同时,结合现有方法,从准确性优化和目标导向性优化2个方面提出了惯量预测方法的优化策略。【结果】最后,对未来电力系统惯量预测领域须深入研究的方向进行展望,旨在为未来电力系统的惯量管理应用提供思路。【结论】文章为未来电力系统惯量管理的理论发展与实践应用提供了重要参考,推动建立更精确、更贴合实际决策需求的惯量预测体系,对提升系统频率稳定性与调节能力具有重要意义。
[Objective] Inertia prediction is critical for frequency control,renewable energy penetration management,fast frequency response analysis,and integrated inertia design of ancillary service markets in the power sector. Predicting system inertia levels is increasingly complex and necessary because a high percentage of renewable power generation is connected to the grid,and the share of conventional controllable generating units is decreasing. [Methods] This paper provides a comprehensive overview of the necessity,challenges,and recent advances in inertia prediction in high-percentage renewable power systems. First,we review the inertia composition of power systems and the development of inertia prediction methods across different periods to analyze the necessity and difficulties of inertia prediction. Then,we present a research framework of inertia prediction methods in power systems with a high proportion of renewable energy,and categorize the inertia prediction methods into those based on statistical and data-driven methods according to their application scenarios and time scales. This classification is elaborated below. In addition,we propose optimization strategies for inertia prediction methods,focusing on accuracy enhancement and goal-oriented approaches,by combining them with existing research results. [Results] We identified key directions that require in-depth future research on power system inertia prediction to provide constructive ideas for advancing inertia management applications. [Conclusions] This study provides an important reference for the future theoretical development and practical application of power system inertia management. It promotes the establishment of a more accurate and practically relevant inertia prediction system to meet actual decision-making needs. This advancement is important for improving the frequency stability and regulation capabilities of the system.
inertia prediction / data-driven / unit commitment / prediction optimization
| [1] |
|
| [2] |
文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856.
|
| [3] |
|
| [4] |
|
| [5] |
文云峰, 林晓煌. 孤岛与并网模式下微电网最低惯量需求评估[J]. 中国电机工程学报, 2021, 41(6): 2040-2053.
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
李兆伟, 方勇杰, 吴雪莲, 等. 频率紧急控制中动作时延和措施量对低惯量系统控制有效性的影响[J]. 电工技术学报, 2024, 39(17): 5394-5405.
|
| [10] |
秦川, 任伟, 江叶峰, 等. 频率安全分段控制下轮次切负荷协调优化策略[J]. 电力自动化设备, 2022, 42(7): 261-268.
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
杨黎, 兰怡希, 林玲, 等. 风储系统中储能虚拟惯量评估与频率支撑技术[J]. 浙江电力, 2024, 43(6): 52-60.
|
| [18] |
张武其, 文云峰, 何烨, 等. 电力系统中长期惯量水平趋势评估及应用[J]. 电力系统自动化, 2024, 48(10): 54-65.
|
| [19] |
张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41(20): 6842-6856.
|
| [20] |
|
| [21] |
马骏超, 陆承宇, 王晨旭, 等. 新型电力系统惯量特性及其实时感知技术[J]. 浙江电力, 2024, 43(2): 1-12.
|
| [22] |
王浩祥, 秦小宇. 新型电力系统背景下基于自适应参数估计电力系统惯量快速估计方法[J]. 电网与清洁能源, 2024, 40(1): 18-28.
|
| [23] |
李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42(2): 84-93.
|
| [24] |
王书征, 张少文, 朱海铭, 等. 基于改进弗雷歇算法的虚拟直流电机等效惯量计算[J]. 电力工程技术, 2023, 42(1): 218-225.
|
| [25] |
孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192.
|
| [26] |
|
| [27] |
|
| [28] |
陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.
|
| [29] |
|
| [30] |
|
| [31] |
刘林, 王大龙, 綦晓, 等. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290.
海上风电作为构建以新能源为主体的新型电力系统的重要组成部分将在沿海城市迅速发展,大规模海上风电并网将大幅削减系统惯量,降低频率抗扰能力。为此,提出基于双锁相环的海上风场综合惯量控制策略。首先,从理论上分析了锁相环对风机虚拟惯量的影响机理,探究了参数变化下风机惯量支撑能力和系统频率响应特性;其次,通过分析锁相环参数变化对风机一次调频能力的消极影响,提出基于变参数-快速双锁相环的海上风场综合惯量调频策略;最后,通过仿真验证所提调频策略的有效性。结果表明,综合惯量控制策略在频率响应快速性、抑制测量噪声等方面均具有显著优势。
To build the new power system with the main body of new energy, the offshore wind farm (OWF) is an important part and has been rapidly developed in coastal cities. However, the large-scale OWFs also reduce the inertia of power systems, which significantly decreases the anti-disturbance capability of system frequency Therefore, a synthetic inertia control strategy for OWF based on dual phase-locked loops (PLL) was proposed. First, the influence mechanism of PLL on virtual inertia of wind turbine was theoretically analyzed for variable parameter PLL. And the variation rule of wind turbine inertia support capacity and system frequency response characteristics with parameter changing PLL was explored. Then, the double PLL based OWF frequency regulation strategy was proposed through analyzing the negative effect of primary frequency regulation characteristics caused by the variable parameter of PLL. Finally, the effectiveness of the proposed frequency regulation strategy was verified though simulations. The results show that the proposed method has significant advantages in frequency response speed and frequency measurement noise suppression. |
| [32] |
王雪, 刘林, 卓庆东, 等. 基于虚拟惯量控制的新型电力系统功率差前馈振荡抑制方法[J]. 中国电力, 2024, 57(4): 68-76.
|
| [33] |
曾辉, 苏安龙, 葛延峰, 等. 考虑负荷特性的区域电网在线转动惯量快速估计算法[J]. 电网技术, 2023, 47(2): 423-436.
|
| [34] |
鲁宗相, 姜继恒, 乔颖, 等. 新型电力系统广义惯量分析与优化研究综述[J]. 中国电机工程学报, 2023, 43(5): 1754-1776.
|
| [35] |
于琳琳, 蒋小亮, 巴文岚, 等. 基于PCA-OLS模型的系统等效惯量中长期预测[J]. 电力系统及其自动化学报, 2024, 36(6): 101-109.
|
| [36] |
|
| [37] |
|
| [38] |
杨博, 陈义军, 姚伟, 等. 基于新一代人工智能技术的电力系统稳定评估与决策综述[J]. 电力系统自动化, 2022, 46(22): 200-223.
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
张磊, 李海涛, 熊致知, 等. 基于可解释性XGBoost的电力系统惯量短期预测方法[J]. 电力建设, 2023, 44(8): 22-30.
对于新型电力系统,提前预测系统惯量水平是消除系统惯量薄弱风险的重要前提。而预测所使用的机器学习模型大多是“黑箱”模型,存在可解释性不足的问题。为此,提出了一种基于可解释性极端梯度提升算法 (extreme gradient boosting,XGBoost)的电力系统惯量短期预测方法。该方法根据系统惯量响应特性分析,选择电力系统运行数据和气象数据作为输入特征。基于SHAP归因方法构建可解释性XGBoost的解释机制,通过计算Shapley值来量化各特征的重要程度,从而对模型预测结果进行多维度解构分析。以实际系统为例进行实证分析,结果表明,所提方法能够有效地预测电力系统短期惯量以及解释特征对预测的影响。
Predicting the level of in advance in new power systems is essential to eliminate the risk of a weak system inertia, and black-box machine learning models, which have insufficient interpretability, are widely used for system-inertia predictions. Therefore, this paper introduces a short-term prediction method, based on interpretable extreme gradient boosting (XGBoost), for power system inertia. Based on the analysis of the system inertia response characteristics, the method selects the power system operation and meteorological data as input features. The interpretation mechanism of XGBoost was constructed based on Shapley additive explanation values. By calculating the Shapley value to quantify the importance of each feature, the model prediction results can be deconstructed into multiple dimensions. Simulations were performed using a realistic photovoltaic system, and the results showed that the proposed method can effectively predict the short-term inertia of a power system as well as elucidate the influence of the features on the predicted results. |
| [50] |
|
| [51] |
|
| [52] |
李梓锋, 张娜, 徐熙林, 等. 考虑风险偏好的快速频率响应备用容量规划[J]. 高电压技术, 2021, 47(10): 3475-3484.
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
巴文岚, 文云峰, 叶希, 等. 风电高渗透电网等效惯量概率预测方法[J]. 电力自动化设备, 2023, 43(3): 124-130, 165.
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
项颂, 苏鹏, 吴坚, 等. 基于多源储能协同的交直流送端系统惯量优化控制模型[J]. 中国电力, 2023, 56(4): 68-76.
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
AI小编
/
| 〈 |
|
〉 |