面向能源互联网的电-碳-氢耦合交易市场研究综述

蒋明轩, 卞艺衡, 李更丰, 黄玉雄, 张润凡

电力建设 ›› 2025, Vol. 46 ›› Issue (8) : 150-165.

PDF(4415 KB)
PDF(4415 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (8) : 150-165. DOI: 10.12204/j.issn.1000-7229.2025.08.014
电力经济

面向能源互联网的电-碳-氢耦合交易市场研究综述

作者信息 +

Review of the Research on the Electricity-Carbon-Hydrogen Coupling Trading Market under the Energy Internet

Author information +
文章历史 +

摘要

【目的】当下世界各国都在积极推动能源转型和低碳发展,电力交易、碳交易和氢交易的耦合已成为我国能源行业发展的必然趋势。但多个系统下能源互济和信息交互的复杂度大大提升,为电-碳-氢耦合交易市场的发展带来了新的挑战。【方法】首先介绍电-碳市场和电-氢市场的研究现状,深入分析电-碳-氢市场的研究方法、耦合机制、交易模式、定价和出清机制;其次针对制约其发展的物理层面和信息层面的双重核心困境,提出构建面向能源互联网的电-碳-氢耦合交易市场的方案,分析能源互联网的参与机制和具体方法;最后从技术层面和市场层面提出支撑面向能源互联网的电-碳-氢市场发展的关键技术和研究要点。【结果】物理层面,能源互联网解决了电-碳-氢交易市场由于资源众多、交互关系繁杂而无法明确市场交易机制和决策规律的问题,实现能源产消规律和机制的厘清;信息层面,能源互联网基于信息技术和数据平台实现了电-碳-氢市场之间的数据匹配共享和信息透明公开,推动了能源分布式自主灵活交易,引导资源优化配置。【结论】探索针对面向能源互联网的电-碳-氢耦合交易市场关键技术和研究要点是打破现有市场发展困境的有效途径,为电-碳-氢交易市场构建方案的完善和发展提供可行的参考路径。

Abstract

[Objective] In recent times,countries worldwide are actively promoting energy transition and low-carbon development,and the coupling of electricity,carbon,and hydrogen trading has become an inevitable trend in the development of China’s energy industry. However,the complexity of energy mutualization and information interaction across multiple systems is significantly enhanced introducing new challenges to the development of a coupled electricity-carbon-hydrogen trading market. [Methods] This study first introduced the existing research on the electricity-carbon and electricity-hydrogen markets and extensively analyzed the research methodology,coupling mechanism,trading mode,pricing,and clearing mechanism of the electricity-carbon-hydrogen market. Second,because of key challenges at both the physical and information levels that constrain market development,the a framework for the electricity-carbon-hydrogen coupling market within the Energy Internet was proposed to address these issues,along with its participation mechanisms and specific methods. Finally,the study summarized key technologies and research points for the electricity-carbon-hydrogen market from both technical and market levels. [Results] At the physical level,the Energy Internet resolved the electricity-carbon-hydrogen market’s challenge of clarifying the market trading mechanism and decision-making law,which arise due to complexity of resources and interactions. It also established clear laws and mechanisms for energy production and marketing. At the information level,based on information technology and data platforms,the Energy Internet realized data matching and sharing,information transparency,and openness among the electricity,carbon,and hydrogen markets; promoted autonomous and flexible distributed energy trading; and guided the optimal resource allocation. [Conclusions] Exploring the key technologies and research points of the coupled electricity-carbon-hydrogen market for the Energy Internet can overcome the dilemma of the development of the existing market and provide a feasible reference path for improving and developing the construction program of the electricity-carbon-hydrogen market.

关键词

能源互联网 / 电-碳-氢交易市场 / 耦合关系 / 交易模式 / 定价策略

Key words

energy internet / electricity-carbon-hydrogen market / coupling relationship / trading model / pricing strategy

引用本文

导出引用
蒋明轩, 卞艺衡, 李更丰, . 面向能源互联网的电-碳-氢耦合交易市场研究综述[J]. 电力建设. 2025, 46(8): 150-165 https://doi.org/10.12204/j.issn.1000-7229.2025.08.014
JIANG Mingxuan, BIAN Yiheng, LI Gengfeng, et al. Review of the Research on the Electricity-Carbon-Hydrogen Coupling Trading Market under the Energy Internet[J]. Electric Power Construction. 2025, 46(8): 150-165 https://doi.org/10.12204/j.issn.1000-7229.2025.08.014
中图分类号: TM73   

参考文献

[1]
International Energy Agency. CO2 emissions in 2023[R]. Paris: International Energy Agency, 2024.
[2]
国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2024.
[3]
周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[4]
别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望[J]. 中国电机工程学报, 2017, 37(22): 6445-6462, 6757.
BIE Zhaohong, WANG Xu, HU Yuan. Review and prospect of planning of energy internet[J]. Proceedings of the CSEE, 2017, 37(22): 6445-6462, 6757.
[5]
王成山, 王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化, 2008, 32(20): 1-4, 31.
WANG Chengshan, WANG Shouxiang. Study on some key problems related to distributed generation systems[J]. Automation of Electric Power Systems, 2008, 32(20): 1-4, 31.
[6]
DING D. The impacts of carbon pricing on the electricity market in Japan[J]. Humanities and Social Sciences Communications, 2022, 9: 353.
[7]
NELSON T, KELLEY S, ORTON F. A literature review of economic studies on carbon pricing and Australian wholesale electricity markets[J]. Energy Policy, 2012, 49: 217-224.
[8]
ZHU B Z, HAN D, CHEVALLIER J, et al. Dynamic multiscale interactions between European carbon and electricity markets during 2005-2016[J]. Energy Policy, 2017, 107: 309-322.
[9]
李祥光, 谭青博, 李帆琪, 等. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125.
LI Xiangguang, TAN Qingbo, LI Fanqi, et al. Analysis model to study the influence of electrocarbon coupling on settlement price of coal power units in spot market[J]. Electric Power, 2024, 57(5): 113-125.
[10]
李彬, 潘雨情, 文华杰, 等. 基于碳减排的氢电资源耦合发展现状及展望[J]. 供用电, 2023, 40(10): 106-113.
LI Bin, PAN Yuqing, WEN Huajie, et al. Current status and prospects of hydrogen electricity resource coupling development based on carbon emission reduction[J]. Distribution Utilization, 2023, 40(10): 106-113.
[11]
尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47(1): 142-154.
SHANG Nan, CHEN Zheng, LU Zhilin, et al. Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1): 142-154.
[12]
吴艳娟, 靳鹏飞, 刘长铖, 等. 基于奖惩阶梯型碳价机制的能源枢纽低碳优化策略[J]. 电力工程技术, 2024, 43(3): 88-98.
WU Yanjuan, JIN Pengfei, LIU Changcheng, et al. Low-carbon optimization strategy for energy hub based on reward-punishment ladder carbon price mechanism[J]. Electric Power Engineering Technology, 2024, 43(3): 88-98.
[13]
蒋玮, 单沫文, 邓一帆, 等. 虚拟电厂聚合电动汽车参与碳市场的优化调度策略[J]. 电力工程技术, 2023, 42(4): 13-22, 240.
JIANG Wei, SHAN Mowen, DENG Yifan, et al. Optimization strategy for aggregating electric vehicles through VPP to participate in the carbon market[J]. Electric Power Engineering Technology, 2023, 42(4): 13-22, 240.
[14]
杨昆达, 沈晓东. 基于碳交易机制和需求响应的配电网重构研究[J]. 电网与清洁能源, 2023, 39(4): 47-53.
YANG Kunda, SHEN Xiaodong. Research on distribution network reconfiguration based on carbon trading mechanism and demand response[J]. Power System and Clean Energy, 2023, 39(4): 47-53.
[15]
MARIN G, MARINO M, PELLEGRIN C. The impact of the European emission trading scheme on multiple measures of economic performance[J]. Environmental and Resource Economics, 2018, 71(2): 551-582.
[16]
AGUIAR-CONRARIA L, JOANA SOARES M, SOUSA R T. California’s carbon market and energy prices: a wavelet analysis[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2126): 20170256.
[17]
国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[R/OL]. 北京: 国家能源局, 2022. (2022-03-23)[2023-11-14]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
[18]
LI Y F, SHI X P, PHOUMIN H. A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: a review and survey analysis[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24592-24609.
[19]
HESEL P, BRAUN S, ZIMMERMANN F, et al. Integrated modelling of European electricity and hydrogen markets[J]. Applied Energy, 2022, 328: 120162.
[20]
张泽熙, 杨争林, 郑亚先, 等. 电氢市场主体参与电力市场的路径及发展展望[J]. 电网技术, 2024, 48(4): 1403-1419.
ZHANG Zexi, YANG Zhenglin, ZHENG Yaxian, et al. The path and development prospects for the participation of hydrogen-electricity market participants in the electricity market[J]. Power System Technology, 2024, 48(4): 1403-1419.
[21]
黄思嘉, 陈卫中, 郑宁敏, 等. 融合碳交易的电力市场交易机制及交易模式探索[J]. 能源与环境, 2023(2): 65-67.
HUANG Sijia, CHEN Weizhong, ZHENG Ningmin, et al. Exploration on trading mechanism and trading mode of power market integrating carbon trading[J]. Energy and Environment, 2023(2): 65-67.
[22]
吴琪, 赵宣茗, 张佳诚, 等. 促进新能源消纳的电-碳市场耦合激励型出清机制[J]. 电力建设, 2023, 44(12): 14-27.
摘要
碳市场的推进有助于“双碳”目标的实现,电力行业将面临电-碳市场耦合的多主体多市场协同的交易格局,其中,环境成本通过碳市场传导进入电市场。然而,在当前的市场出清机制中,发电商的环境效益未能有效纳入,导致以新能源为主的低排放机组出清结果不理想,影响“双碳”目标实现。为此,通过引入激励因子调整机组发电投标策略,在电-碳市场耦合背景下,设计了以促进新能源消纳为目标的激励型出清机制。以此建立双层模型:上层对异质发电商投标策略建模,下层对激励型市场出清机制进行建模,通过深度强化学习算法求解模型。算例分析表明,设计模型能够正确描述耦合市场之间的相互影响,设计的出清机制提升了新能源机组的发电比重,促进了新能源消纳,提升了电力行业社会效益和减排效益。
WU Qi, ZHAO Xuanming, ZHANG Jiacheng, et al. Electricity-carbon market coupling incentive clearing mechanism to promote consumption of new energy[J]. Electric Power Construction, 2023, 44(12): 14-27.
 Promoting the carbon market will help achieve carbon peaking and carbon neutrality goals. The power industry will face a multi-entity and multi-market coordinated trading pattern of electricity-carbon market coupling, in which environmental costs are transmitted into the electricity market through the carbon market. However, in the current market-clearing mechanism, the environmental benefits of power generators have not been effectively included, resulting in unsatisfactory results for low-emission units, mainly based on new energy sources, which affects the realization of goals. Therefore, by introducing incentive factors to adjust the bidding strategy of unit power generation, an incentive-clearing mechanism to promote the absorption of new energy was designed under the background of electricity-carbon market coupling. Thus, a two-layer model is established: the upper layer models the bidding strategy of heterogeneous power generators, and the lower layer models the incentive market-clearing mechanism. The model is solved with a deep reinforcement learning algorithm. The analysis indicates that the design model can correctly describe the interaction between the coupling markets and that the designed clearing mechanism increases the proportion of power generation in new energy units, promotes the absorption of new energy, and improves the social and emission reduction benefits of the power industry.
[23]
TOSTADO-VÉLIZ M, REZAEE JORDEHI A, MANSOURI S A, et al. A local electricity-hydrogen market model for industrial parks[J]. Applied Energy, 2024, 360: 122760.
[24]
陈丽霞, 周云, 方陈, 等. 考虑碳交易的发电商和电力用户竞价博弈[J]. 电力系统及其自动化学报, 2019, 31(10): 66-72.
CHEN Lixia, ZHOU Yun, FANG Chen, et al. Bidding game between power generation companies and consumers considering carbon trade[J]. Proceedings of the CSU-EPSA, 2019, 31(10): 66-72.
[25]
靳冰洁, 李家兴, 彭虹桥, 等. 需求响应下计及电碳市场耦合的多元主体成本效益分析[J]. 电力建设, 2023, 44(2): 50-60.
摘要
成本效益研究有助于了解各市场主体的效益情况和交易意愿,从而指导市场制定更加合理的交易机制。文章提出了一种需求响应(demand response,DR)下计及电碳交易市场耦合的多个市场主体的成本效益分析方法。首先将碳交易中的单位碳排放成本计入各发电机组的报价函数中进行统一出清,体现碳交易与现货市场运营的耦合;其次,考虑了需求响应下电碳耦合市场中各个主体的交易机制,提出了发电侧、用户侧、负荷聚合商、储能运营商及电网侧的成本效益分析模型。最后,对中国某省电网某实际运行日进行了算例分析,结果表明,碳排放权交易市场运作将抬高电力市场出清价格,影响相关主体的成本与效益。
JIN Bingjie, LI Jiaxing, PENG Hongqiao, et al. Cost-benefit analysis of multiple entities under the coupling of electricity and carbon trading market considering demand response[J]. Electric Power Construction, 2023, 44(2): 50-60.

Cost-benefit research helps to understand the benefits and willingness to trade of various market players, so as to guide the market to formulate a more reasonable trading mechanism. This paper proposes a cost-benefit analysis method for multiple market players considering the coupling of electricity and carbon trading markets under demand response (DR). First, the unit carbon emission cost in carbon trading is included in the quotation function of each generating unit for unified clearing, which reflects the coupling of carbon trading and spot market operations. Secondly, the transactions of various entities in the electricity-carbon coupling market under demand response are considered. A cost-benefit analysis model for the generation side, the user side, the load aggregator, the energy storage operator and the grid side is proposed. Finally, an example analysis is carried out on an actual operation day of a certain provincial power grid in China. The results show that the operation of the carbon emission trading market will raise the clearing price of the electricity market and affect the cost and benefit of the relevant entities.

[26]
万文轩, 冀亚男, 尹力, 等. 碳交易在综合能源系统规划与运行中的应用及展望[J]. 电测与仪表, 2021, 58(11): 39-48.
WAN Wenxuan, JI Yanan, YIN Li, et al. Application and prospect of carbon trading in the planning and operation of integrated energy system[J]. Electrical Measurement Instrumentation, 2021, 58(11): 39-48.
[27]
王浩然, 冯天天, 崔茗莉, 等. 碳交易政策下绿氢交易市场与电力市场耦合效应分析[J]. 南方能源建设, 2023, 10(3): 32-46.
WANG Haoran, FENG Tiantian, CUI Mingli, et al. Analysis of coupling effect between green hydrogen trading market and electricity market under carbon trading policy[J]. Southern Energy Construction, 2023, 10(3): 32-46.
[28]
YUAN J H, ZHANG W R, SHEN Q X, et al. The impact of electricity-carbon market coupling on system marginal clearing price and power supply cost[J]. Environmental Science and Pollution Research, 2023, 30(35): 84725-84741.
[29]
PAN G, GU W, CHEN Y, et al. Cooperative electricity hydrogen trading model for optimizing low-carbon travel using Nash bargaining theory[J]. CSEE Journal of Power and Energy Systems, 2024, 10(6):2577-2586.
[30]
ZHONG W F, XIE S L, XIE K, et al. Cooperative P2P energy trading in active distribution networks: an MILP-based Nash bargaining solution[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1264-1276.
[31]
刘志坚, 余宸昕, 梁宁, 等. 考虑碳排放金融市场的风-氢-火多能耦合系统交易模型[J]. 电力自动化设备, 2023, 43(5): 138-144.
LIU Zhijian, YU Chenxin, LIANG Ning, et al. Trading model of wind-hydrogen-fire coupled energy system considering carbon emission financial market[J]. Electric Power Automation Equipment, 2023, 43(5): 138-144.
[32]
崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45(5): 1877-1886.
CUI Yang, ZENG Peng, HUI Xinxin, et al. Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power System Technology, 2021, 45(5): 1877-1886.
[33]
申洪, 周勤勇, 刘耀, 等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42(1): 8-19.
摘要
我国提出到2030年实现碳达峰,2060年实现碳中和的目标。结合2050年全球能源互联网场景及骨干网架,从高比例清洁能源、联网格局与网络结构、运行控制措施等方面探讨了全球能源互联网构建的若干问题,分析了清洁能源比例、实施路径及应对挑战措施,提出多节点多回路广义骨干网架概念,讨论了分层分区结构,提出了智能调度、稳定控制、信息通信及大数据等运行控制措施建议,并对大容量远距离输电、储能、清洁能源发电等构建全球能源互联网的关键技术进行了展望。
SHEN Hong, ZHOU Qinyong, LIU Yao, et al. Key technologies and prospects for the construction of global energy Internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42(1): 8-19.

China has set a goal of reaching a carbon peak by 2030 and becoming carbon neutral by 2060. Based on the 2050 global energy interconnection (GEI) scenario and backbone grid plan, such issues in the construction of the GEI as high proportion of clean energy, connecting pattern and grid structure, operation control measures, etc. were studied. The proportions of clean energy, implementation path and responding measures to challenges were analysed, the concept of multi-node and multi-loop generalized backbone grid were proposed. The hierarchical and zoning structure was discussed, and intelligent dispatching, stability control, information communication and big data and other operational control measures were proposed. Key technologies such as large-capacity long-distance power transmission, cross-sea power transmission, clean energy power generation, and energy storage were analysed and predicted.

[34]
刘念, 赵璟, 王杰, 等. 基于合作博弈论的光伏微电网群交易模型[J]. 电工技术学报, 2018, 33(8): 1903-1910.
LIU Nian, ZHAO Jing, WANG Jie, et al. A trading model of PV microgrid cluster based on cooperative game theory[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1903-1910.
[35]
彭大健, 裴玮, 肖浩, 等. 数据驱动的用户需求响应行为建模与应用[J]. 电网技术, 2021, 45(7): 2577-2586.
PENG Dajian, PEI Wei, XIAO Hao, et al. Data-driven consumer demand response behavior modelization and application[J]. Power System Technology, 2021, 45(7): 2577-2586.
[36]
陈启鑫, 吕睿可, 郭鸿业, 等. 面向需求响应的电力用户行为建模: 研究现状与应用[J]. 电力自动化设备, 2023, 43(10): 23-37.
CHEN Qixin, Ruike, GUO Hongye, et al. Electricity user behavior modeling for demand response: research status quo and applications[J]. Electric Power Automation Equipment, 2023, 43(10): 23-37.
[37]
胡静哲, 王旭, 蒋传文, 等. 计及综合能源服务商参与的电力系统低碳经济调度[J]. 电网技术, 2020, 44(2): 514-522.
HU Jingzhe, WANG Xu, JIANG Chuanwen, et al. Low-carbon economic dispatch of power system considering participation of integrated energy service providers[J]. Power System Technology, 2020, 44(2): 514-522.
[38]
刘敦楠, 曾鸣, 黄仁乐, 等. 能源互联网的商业模式与市场机制(二)[J]. 电网技术, 2015, 39(11): 3057-3063.
LIU Dunnan, ZENG Ming, HUANG Renle, et al. Business models and market mechanisms of E-net(2)[J]. Power System Technology, 2015, 39(11): 3057-3063.
[39]
吴鸿亮, 程耀华, 张宁, 等. 跨省区碳交易机制下发电碳排放配额分配方法[J]. 电网技术, 2016, 40(11): 3440-3445.
WU Hongliang, CHENG Yaohua, ZHANG Ning, et al. A study on power carbon emission quota allocation in interprovincial carbon trading mechanism[J]. Power System Technology, 2016, 40(11): 3440-3445.
[40]
胡静哲, 王旭, 蒋传文, 等. 考虑区域碳排放均衡性的电力系统最优阶梯碳价[J]. 电力系统自动化, 2020, 44(6): 98-105.
HU Jingzhe, WANG Xu, JIANG Chuanwen, et al. Optimal tiered carbon price of power system considering equilibrium of regional carbon emission[J]. Automation of Electric Power Systems, 2020, 44(6): 98-105.
[41]
李奇, 霍莎莎, 蒲雨辰, 等. 面向含氢综合能源系统的电-碳-氢耦合交易市场研究综述[J]. 电力自动化设备, 2023, 43(12): 175-187.
LI Qi, HUO Shasha, PU Yuchen, et al. Review on electricity-carbon-hydrogen coupling trading market for integrated energy system with hydrogen[J]. Electric Power Automation Equipment, 2023, 43(12): 175-187.
[42]
DENG Z H, JIANG Y W. Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11527-11537.
[43]
USMAN M R. Hydrogen storage methods: review and current status[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112743.
[44]
安麒. 电氢联合市场定价机制与分解协调方法研究[D]. 北京: 华北电力大学, 2022.
AN Qi. Pricing mechanism and decentralized coordination method for integrated electricity-hydrogen market[D]. Beijing: North China Electric Power University, 2022.
[45]
TSIKLIOS C, HERMESMANN M, MÜLLER T E. Hydrogen transport in large-scale transmission pipeline networks: thermodynamic and environmental assessment of repurposed and new pipeline configurations[J]. Applied Energy, 2022, 327: 120097.
[46]
LANG C G, JIA Y, YAO X D. Recent advances in liquid-phase chemical hydrogen storage[J]. Energy Storage Materials, 2020, 26: 290-312.
[47]
ZHANG T T, URATANI J, HUANG Y X, et al. Hydrogen liquefaction and storage: recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204.
[48]
刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171.
摘要
氢燃料电池是实现氢能转换为电能利用的关键载体,在碳中和、碳达峰目标提出后,获得了基础研究与产业应用层面新的高度关注。本文围绕氢燃料电池技术体系,较为全面地分析了质子交换膜、电催化剂、气体扩散层等膜电极组件,双极板,系统部件,控制策略等方面的研究进展与发展态势;结合我国氢燃料电池技术领域国产化率、系统寿命、功率密度、制造成本等方面的发展现状分析,论证提出了面向 2035 年我国氢燃料电池技术系统发展方向。研究认为,为加速氢能及氢燃料电池技术应用,应加强制氢技术攻关,降低氢气燃料使用成本;加快关键材料和核心组件的技术攻关和转化应用;制定产业规划并增加投入,构建完备的政策支撑体系。
LIU Yingdu, GUO Hongxia, OUYANG Xiaoping. Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171.

Hydrogen fuel cell is a key element for conversing hydrogen energy into electric power and has attracted increasing attention from the aspects of basic research and industrial application following the proposal of carbon neutral and carbon peaking. Focusing mainly on the hydrogen fuel cell technology system, we analyze the research progress and development trends of membrane electrode components (such as proton exchange membranes, electrocatalysts, and gas diffusion layers), bipolar plates, system components, and control strategies. Subsequently, we propose the development directions of the hydrogen fuel cell technology system by 2035, following the analysis of the development status of the hydrogen fuel cell technology in China in terms of localization rate, system lifetime, power density, and manufacturing cost. To accelerate the application of hydrogen energy and hydrogen fuel cell technology, we suggest that research on hydrogen production technology should be strengthened to reduce the cost of hydrogen fuel, the technological research and application of key materials and core components should be accelerated, and industrial plans with increased investment should be formulated to establish a complete policy support system.

[49]
刘世成, 张东霞, 朱朝阳, 等. 能源互联网中大数据技术思考[J]. 电力系统自动化, 2016, 40(8): 14-21, 56.
LIU Shicheng, ZHANG Dongxia, ZHU Chaoyang, et al. A view on big data in energy internet[J]. Automation of Electric Power Systems, 2016, 40(8): 14-21, 56.
[50]
刘永辉, 张显, 孙鸿雁, 等. 能源互联网背景下电力市场大数据应用探讨[J]. 电力系统自动化, 2021, 45(11): 1-10.
LIU Yonghui, ZHANG Xian, SUN Hongyan, et al. Discussion on application of big data in electricity market in background of energy Internet[J]. Automation of Electric Power Systems, 2021, 45(11): 1-10.
[51]
张显, 史连军. 中国电力市场未来研究方向及关键技术[J]. 电力系统自动化, 2020, 44(16): 1-11.
ZHANG Xian, SHI Lianjun. Future research areas and key technologies of electricity market in China[J]. Automation of Electric Power Systems, 2020, 44(16): 1-11.
[52]
刘永辉, 张显, 谢开, 等. 能源互联网背景下的新一代电力交易平台设计探讨[J]. 电力系统自动化, 2021, 45(7): 104-115.
LIU Yonghui, ZHANG Xian, XIE Kai, et al. Discussion on design of new-generation electricity trading platform in background of energy internet[J]. Automation of Electric Power Systems, 2021, 45(7): 104-115.
[53]
周益民, 杨博, 胡袁炜骥, 等. 考虑绿证-碳交易的多能互补综合能源系统电-热-气协同低碳优化调度[J/OL]. 电网技术, 2024: 1-22. (2024-06-14)[2024-07-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20240611001dbname=CJFDdbcode=CJFQ.
ZHOU Yimin, YANG Bo, HU Yuanweiji, et al. Low-carbon optimal dispatching of multi-energy complementary comprehensive energy system considering green card-carbon trading[J/OL]. Power System Technology, 2024: 1-22. (2024-06-14)[2024-07-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20240611001dbname=CJFDdbcode=CJFQ.
[54]
ZHU X X, XUE J F, HU M, et al. Low-carbon economy dispatching of integrated energy system with P2G-HGT coupling wind power absorption based on stepped Carbon emission trading[J]. Energy Reports, 2023, 10: 1753-1764.
[55]
MA Y M, WANG H X, HONG F, et al. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system[J]. Energy, 2021, 236: 121392.
[56]
谈金晶, 李扬. 多能源协同的交易模式研究综述[J]. 中国电机工程学报, 2019, 39(22): 6483-6497.
TAN Jinjing, LI Yang. Review on transaction mode in multi-energy collaborative market[J]. Proceedings of the CSEE, 2019, 39(22): 6483-6497.
[57]
于丽芳, 李燕雪, 朱明晞, 等. 电-氢-碳综合能源系统协同经济调度[J]. 电力需求侧管理, 2022, 24(6): 63-69.
YU Lifang, LI Yanxue, ZHU Mingxi, et al. Coordinated economic dispatch of electricity-hydrogen-carbon integrated energy system[J]. Power Demand Side Management, 2022, 24(6): 63-69.
[58]
韩洁平, 刘宇途, 曲洋. 中国电力市场建设研究[J]. 科技经济市场, 2023(1): 51-53.
HAN Jieping, LIU Yutu, QU Yang. Research on the construction of China power market[J]. Science Technology Ecnony Market, 2023(1): 51-53.
[59]
ZHOU K L, LI Y W. Carbon finance and carbon market in China: progress and challenges[J]. Journal of Cleaner Production, 2019, 214: 536-549.
Climate change has become one of the major challenges that humans have faced in recent years. As an economic measure to cope with climate change, carbon finance has drawn considerable attention in recent years, since it can promote low-cost emission reductions. As the largest developing country with rich carbon emission resources, China plays an important role in establishing a sound carbon trading market. This study presents a systematic review of the research and development progress and challenges of China's carbon finance and carbon market. Based on the brief introduction of some related concepts and background, this study mainly discusses the role of China's financial institutions in carbon finance, and the development of China's carbon market. Particularly, it focuses on the recent practices and the carbon trading pilots established in China. In addition, the major challenges for China to establish a national unified carbon market were pointed out, in terms of awareness, relevant professionals, sound legal systems and carbon financial product innovation. Finally, we put forward the policy implications for the future development of carbon finance and carbon market, which provides important decision support for establishing a unified global carbon market. (C) 2019 Elsevier Ltd.
[60]
杨玉强, 徐程炜, 邓晖. 碳市场与电力市场协同运行关键问题研究[J]. 浙江电力, 2023, 42(5): 66-75.
YANG Yuqiang, XU Chengwei, DENG Hui. A study of key issues in the coordinated operation between carbon market and electricity market[J]. Zhejiang Electric Power, 2023, 42(5): 66-75.
[61]
张建平, 王晓东, 李琦, 等. 新形势下中国氢能市场现状与展望[J]. 天然气技术与经济, 2023, 17(1): 11-18.
摘要
2019年氢能元年以来,中国氢能产业持续高速发展,随着新冠肺炎疫情的新变化,氢能产业发展进入新阶段,面临着新的挑战,在“双碳”战略持续推进的情况下,表现出新特点,包括:能源行业处于整体转型期,氢能政策处于频发期,氢能市场处于加速培育期,氢能企业处于转型窗口期,氢能技术处于爆发期,应用场景处于突破期。在总结氢能市场现状和特点基础上,预计氢能产业发展将呈现如下趋势:氢能政策将进一步优化调整,产业链发展协同度进一步提升,产业生态进一步拓展,国际合作进一步加强,交通领域将有新的突破,区域产业发展差距将进一步拉大。最后,提出如下建议:坚持以有为政策为发展导向,保障产业健康有序发展;坚持以市场驱动为核心动力,打造拥有市场竞争力的商业模式;坚持以创新驱动为高效引导,强化技术的产学研一体化研发与孵化;坚持以行为驱动为关键补充,发挥氢能的碳资源和碳交易潜力;坚持以内培外聘为重要抓手,提升企业氢能人才队伍水平。
ZHANG Jianping, WANG Xiaodong, LI Qi, et al. China’s hydrogen energy market under new situations: status and outlook[J]. Natural Gas Technology and Economy, 2023, 17(1): 11-18.
[62]
董福贵, 时磊. 可再生能源配额制及绿色证书交易机制设计及仿真[J]. 电力系统自动化, 2019, 43(12): 113-121.
DONG Fugui, SHI Lei. Design and simulation of renewable portfolio standard and tradable green certificate mechanism[J]. Automation of Electric Power Systems, 2019, 43(12): 113-121.
[63]
崔杨, 沈卓, 王铮, 等. 考虑绿证-碳排等价交互机制的区域综合能源系统绿色调度[J]. 中国电机工程学报, 2023, 43(12): 4508-4517.
CUI Yang, SHEN Zhuo, WANG Zheng, et al. Green dispatch of regional integrated energy system considering green certificate-carbon emission equivalent interaction mechanism[J]. Proceedings of the CSEE, 2023, 43(12): 4508-4517.
[64]
冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11.
FENG Changsen, XIE Fangrui, WEN Fushuan, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11.
[65]
WANG B K, LI C H, BAN Y S, et al. A two-tier bidding model considering a multi-stage offer-carbon joint incentive clearing mechanism for coupled electricity and carbon markets[J]. Applied Energy, 2024, 368: 123497.
[66]
王韵楚, 张智, 卢峰, 等. 考虑用户行为不确定性的阶梯式需求响应激励机制[J]. 电力系统自动化, 2022, 46(20): 64-73.
WANG Yunchu, ZHANG Zhi, LU Feng, et al. Stepwise incentive mechanism of demand response considering uncertainty of user behaviors[J]. Automation of Electric Power Systems, 2022, 46(20): 64-73.
[67]
LIU Z, ZHANG X L, LIEU J. Design of the incentive mechanism in electricity auction market based on the signaling game theory[J]. Energy, 2010, 35(4): 1813-1819.

基金

国家自然科学基金联合项目(U22B20108)

编辑: 景贺峰
PDF(4415 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/