新型电力系统电力电量平衡概率性分析实用方法研究

李宛洳, 郭瑾程, 王建学, 王秀丽, 杨钤, 马骞

电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 1-12.

PDF(1657 KB)
PDF(1657 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 1-12. DOI: 10.12204/j.issn.1000-7229.2025.09.001
新型电力系统平衡决策智能分析与灵活性资源综合规划·栏目主持 王建学、张耀·

新型电力系统电力电量平衡概率性分析实用方法研究

作者信息 +

A Practical Method for Probabilistic Analysis of Electric Power and Energy Balance of New Power System

Author information +
文章历史 +

摘要

【目的】高比例新能源并网带来的强随机性以及极端事件频发,使得采用确定性方式构建电力电量平衡分析表的模式越来越不适用。【方法】在保留多年实践广受认可的平衡表格形式基础上,构建概率性场景,设计了电力电量平衡概率性分析实用方法。具体包括:建立了概率性电力电量平衡分析框架,提出了典型场景、边缘场景和极端场景的构建方法;设计了概率性电力电量平衡表整体架构,并根据平衡裕度和新能源消纳指数指标进行平衡风险判断;针对平衡风险严重的重点时段,进一步设计了电力电量平衡分析指标体系,并采用时序生产模拟进行精细化的平衡状态评估。【结果】改进ROTS测试系统概率性电力电量平衡表结果显示全年处于紧平衡状态;在11月91.36%概率的典型场景,可以保持电力电量平衡;在11月供应最紧张场景,电量平衡裕度为97%,最大电力不足为2.66 GW,与时序生产模拟的结果接近。【结论】测试系统算例验证了所提方法既能较好适应高比例新能源并网场景,也能根据平衡风险采用不同维度分析,能很好满足工程应用需要。

Abstract

[Objective] The use of deterministic methods to construct power and energy balance tables is unsuitable because of the strong randomness and frequent occurrence of extreme events caused by a high proportion of new energy grid connections. [Methods] Based on a widely recognized balance table form, this study constructed probabilistic scenarios and designed a practical method for the probabilistic analysis of power and energy balance. Specifically, a probabilistic analysis framework for power and energy balance was established, and methods for constructing typical, edge, and extreme scenarios were proposed. The overall framework of the probabilistic power and energy balance table was designed, and a balancing risk assessment based on indicators of the balance margin and a new energy consumption index was conducted. For key periods with severe balance risks, an index system for power and energy balance analysis was designed, and a refined balance state evaluation was performed using a time-series production simulation. [Results] The results of the probabilistic power and energy balance table of the improved ROTS test system showed that it is in a tight balance state throughout the year. In a typical scenario with a probability of 91.36% in November, the power and energy balance could be maintained. In the tightest supply scenario in November, the energy balance margin was 97%, and the maximum power shortage was 2.66 GW, which are close to the results of the time-series production simulation. [Conclusions] The test system examples suggest that the proposed method can adapt well to a high proportion of new energy grid-connected scenarios and adopt different dimensions of analysis based on balancing risks, which can satisfy the requirements of engineering applications.

关键词

电力电量平衡 / 概率性评估 / 多场景构建 / 时序生产模拟 / 平衡风险

Key words

power and energy balance / probabilistic analysis / multi-scenarios construction / time-series production simulation / balancing risk

引用本文

导出引用
李宛洳, 郭瑾程, 王建学, . 新型电力系统电力电量平衡概率性分析实用方法研究[J]. 电力建设. 2025, 46(9): 1-12 https://doi.org/10.12204/j.issn.1000-7229.2025.09.001
LI Wanru, GUO Jincheng, WANG Jianxue, et al. A Practical Method for Probabilistic Analysis of Electric Power and Energy Balance of New Power System[J]. Electric Power Construction. 2025, 46(9): 1-12 https://doi.org/10.12204/j.issn.1000-7229.2025.09.001
中图分类号: TM73   

参考文献

[1]
陈典, 陆润钊, 张松涛, 等. 新型电力系统电力电量平衡计算分析技术综述[J]. 电网技术, 2023, 47(10): 3952-3970.
CHEN Dian, LU Runzhao, ZHANG Songtao, et al. Review of new power system power balance calculation and analysis techniques[J]. Power System Technology, 2023, 47(10): 3952-3970.
[2]
杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12): 130-139.
[3]
杨祺铭, 李更丰, 别朝红, 等. 计及间歇性新能源的弹性城市电网输配电协同供电恢复方法[J]. 高电压技术, 2023, 49(7): 2764-2774.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Coordinated power supply restoration method of resilient urban transmission and distribution networks considering intermittent new energy[J]. High Voltage Engineering, 2023, 49(7): 2764-2774.
[4]
李明昊, 杨祺铭, 李更丰, 等. 台风场景下基于多种分布式资源协同的弹性配电网两阶段供电恢复策略[J]. 高电压技术, 2024, 50(1): 93-104.
LI Minghao, YANG Qiming, LI Gengfeng, et al. Two-stage power supply restoration strategy of resilient distribution network based on coordination of multiple distributed resources in typhoon scenario[J]. High Voltage Engineering, 2024, 50(1): 93-104.
[5]
高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4538.
GAO Hongjun, GUO Minghao, LIU Junyong, et al. Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43(12): 4517-4538.
[6]
谭永才. 电力系统规划设计技术[M]. 北京: 中国电力出版社, 2012.
[7]
杨钤, 王建学, 杨续松, 等. 电力电量平衡分析及其加速求解技术的发展、应用与展望[J]. 电网技术, 2024, 48(2): 760-778.
YANG Qian, WANG Jianxue, YANG Xusong, et al. Development, application and prospect of power and energy balance analysis and its speedup computation technologies[J]. Power System Technology, 2024, 48(2): 760-778.
[8]
丁明, 林玉娟, 潘浩. 考虑负荷与新能源时序特性的随机生产模拟[J]. 中国电机工程学报, 2016, 36(23): 6305-6314, 6595.
DING Ming, LIN Yujuan, PAN Hao. Probabilistic production simulation considering time sequence characteristics of load and new energy[J]. Proceedings of the CSEE, 2016, 36(23): 6305-6314, 6595.
[9]
朱睿, 胡博, 谢开贵, 等. 含风电-光伏-光热-水电-火电-储能的多能源电力系统时序随机生产模拟[J]. 电网技术, 2020, 44(9): 3246-3253.
ZHU Rui, HU Bo, XIE Kaigui, et al. Sequential probabilistic production simulation of multi-energy power system with wind power, photovoltaics, concentrated solar power, cascading hydro power, thermal power and battery energy storage[J]. Power System Technology, 2020, 44(9): 3246-3253.
[10]
BAI X, WU H B, YANG S H, et al. Probabilistic production simulation of a wind/photovoltaic/energy storage hybrid power system based on sequence operation theory[J]. IET Generation, Transmission & Distribution, 2018, 12(11): 2700-2706.
[11]
MAISONNEUVE N, GROSS G. A production simulation tool for systems with integrated wind energy resources[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2285-2292.
[12]
刘映尚, 马骞, 王子强, 等. 新型电力系统电力电量平衡调度问题的思考[J]. 中国电机工程学报, 2023, 43(5): 1694-1706.
LIU Yingshang, MA Qian, WANG Ziqiang, et al. Cogitation on power and electricity balance dispatching in new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1694-1706.
[13]
李程昊, 张佳伟, 姚德贵, 等. 含复杂电源结构省级电力系统电力电量平衡方法[J]. 高电压技术, 2024, 50(3): 1100-1110.
LI Chenghao, ZHANG Jiawei, YAO Degui, et al. Power balance method of provincial power system with complex generation structure[J]. High Voltage Engineering, 2024, 50(3): 1100-1110.
[14]
KIRILENKO A, GONG Y Z, CHUNG C Y. A framework for power system operational planning under uncertainty using coherent risk measures[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4376-4386.
[15]
DU E S, ZHANG N, KANG C Q, et al. A high-efficiency network-constrained clustered unit commitment model for power system planning studies[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2498-2508.
[16]
郭红霞, 陈凌轩, 张启, 等. 电力电量平衡视角下新型电力系统极端场景研究及应对综述[J]. 电网技术, 2024, 48(10): 3975-3994.
GUO Hongxia, CHEN Lingxuan, ZHANG Qi, et al. Research and response to extreme scenarios in new power system: a review from perspective of electricity and power balance[J]. Power System Technology, 2024, 48(10): 3975-3994.
[17]
万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16.
WAN Can, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(1): 2-16.
[18]
XU Z C, LU G, ZHAO J J. Multi-scenario generation technology considering extreme scenarios in energy system modeling[J]. IOP Conference Series: Earth and Environmental Science, 2020, 546(2): 022057.
[19]
刘纯, 黄越辉, 石文辉, 等. 新能源电力系统生产模拟[M]. 北京: 中国电力出版社, 2019.
[20]
元一平, 王建学, 张耀, 等. 考虑多周期协调的新能源电力系统全景运行模拟方法与评估指标体系[J]. 电网技术, 2020, 44(3): 799-806.
YUAN Yiping, WANG Jianxue, ZHANG Yao, et al. Panoramic operation simulation approach and estimation index system for new energy power system considering multi-period coordination[J]. Power System Technology, 2020, 44(3): 799-806.
[21]
李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986.
LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986.
[22]
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[23]
王锡凡. 电力系统规划基础[M]. 北京: 中国电力出版社, 1994.
WANG Xifan. Fundamentals of power system planning[M]. Beijing: China Electric Power Press, 1994.
[24]
WENYUAN LI PH D. Risk assessment of power systems: models, methods, and applications[M]. New York: John Wiley & Sons, 2004.
[25]
蒲天骄, 陈乃仕, 葛贤军, 等. 电力电量平衡评价指标体系及其综合评估方法研究[J]. 电网技术, 2015, 39(1): 250-256.
PU Tianjiao, CHEN Naishi, GE Xianjun, et al. Research on evaluation index system and synthetical evaluation method for balance of electric power and energy[J]. Power System Technology, 2015, 39(1): 250-256.
[26]
朱泽磊, 周京阳, 潘毅, 等. 考虑电力电量平衡的安全约束经济调度[J]. 中国电机工程学报, 2013, 33(10): 168-176.
ZHU Zelei, ZHOU Jingyang, PAN Yi, et al. Security constrained economic dispatch considering balance of electric power and energy[J]. Proceedings of the CSEE, 2013, 33(10): 168-176.
[27]
黄河, 王建学, 肖云鹏, 等. 新型电力系统电力电量平衡分析关键技术与研究框架[J]. 电力建设, 2024, 45(9): 1-12.
摘要
随着新型电力系统加速构建,可再生能源发电装机与电量占比不断攀升。如何在源荷双重强不确定性下实现准确、高效、实用的电力电量平衡分析,是新型电力系统调控与规划中的基础与关键问题。通过对电力电量平衡分析在研究对象、分析模型与方法、评价指标与应用等方面的综述,总结了现有研究在平衡状态刻画和分析计算方面的不足。针对“强随机性与策略性下的电力电量平衡状态刻画”与“集中调控-协调自治平衡机制下的电力电量平衡分析与计算”两大关键科学问题,首先提出了涵盖“平衡边界生成-平衡分析计算-平衡状态评估-平衡预警-平衡能力提升”的新型电力系统电力电量平衡分析研究内容体系,接着阐述随机性平衡场景生成、多周期协调解耦的平衡分析、平衡状态评估指标体系设计、多时空分级平衡能力预警和新型平衡协作机制的研究思路与技术方案。最后总结并展望了新型电力系统电力电量平衡分析研究中需要重点突破的关键技术。
HUANG He, WANG Jianxue, XIAO Yunpeng, et al. Key technologies and research framework for the power and energy balance analysis in new-type power systems[J]. Electric Power Construction, 2024, 45(9): 1-12.

With the accelerated construction of new types of power systems, the proportion of integrated renewable energy sources has increased rapidly. Achieving an accurate, efficient, and practical power balance analysis under strong uncertainty of the source and load is a basic theme in the dispatching, controlling, and planning of new power systems. Hence, the shortcomings of current research in the description and calculation of the balance state are reviewed by summarizing the research objects, analytical models and methods, evaluation indices, and applications of power and quantity balance analyses. Based on the two key scientific issues of “electric power and energy balance state description under strong randomness and strategy” and “electric power and energy balance analysis and calculation under the centralized regulation-coordination autonomous balancing mechanism,” a research theoretical system for electric power and energy balance is proposed. First, this system covers “balance boundary generation-balance analysis and calculation-balance state assessment- balance early warning-balance capacity improvement.” Then, research ideas and technical schemes are proposed, including random balanced scenario generation, multi-period coordination decoupling balanced analysis, balanced state evaluation index system design, multi-spatial-temporal hierarchical balanced early warning, and balanced cooperation mechanism construction. Finally, some key technologies are worthy of consideration in further research on electric power and energy balance analyses in new types of power systems.

[28]
李海波, 鲁宗相, 乔颖, 等. 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39(6): 1672-1678.
LI Haibo, LU Zongxiang, QIAO Ying, et al. Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology, 2015, 39(6): 1672-1678.
[29]
LANNOYE E, FLYNN D, O’MALLEY M. Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27(2): 922-931.
[30]
MOHANDES B, EL MOURSI M S, HATZIARGYRIOU N, et al. A review of power system flexibility with high penetration of renewables[J]. IEEE Transactions on Power Systems, 2019, 34(4): 3140-3155.
[31]
WANG J X, WEI J D, ZHU Y C, et al. The reliability and operational test system of a power grid with large-scale renewable integration[J]. CSEE Journal of Power and Energy Systems, 2020, 6(3): 704-711.

基金

国家重点研发计划资助项目“支撑20%新能源电量占比场景下的电网智能调度关键技术”(2022YFB2403500)

编辑: 景贺峰
PDF(1657 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/