考虑动态互联微电网与网络重构的弹性配电网多源序贯协同供电恢复方法

王治然, 杨祺铭, 黄玉雄, 李更丰, 汤一达, 李明昊, 别朝红

电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 13-26.

PDF(2333 KB)
PDF(2333 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 13-26. DOI: 10.12204/j.issn.1000-7229.2025.09.002
新型电力系统平衡决策智能分析与灵活性资源综合规划·栏目主持 王建学、张耀·

考虑动态互联微电网与网络重构的弹性配电网多源序贯协同供电恢复方法

作者信息 +

Multi-Source Sequential Coordinated Power-Supply Recovery Method for Resilient Distribution Networks Considering Dynamic Networked Microgrids and Network Reconfiguration

Author information +
文章历史 +

摘要

【目的】配电网在发生多处断线故障后可以通过形成多个微电网的方式维持负荷供电,而微电网的最初形成及后续动态互联过程需要考虑频率电压控制以及多类型资源的序贯协同出力。为此,提出了一种考虑动态互联微电网技术和网络重构方法的灾后配电网多源序贯协同供电恢复方法。【方法】首先,考虑即将到来的极端事件对用户出行意愿的影响,搭建了灾前电动汽车调度模型;然后,建立了综合考虑分布式电源出力、电动汽车反向充电、抢修队调度、柔性负荷管理等多类型资源序贯协同的供电恢复模型,并将频率电压控制约束嵌入模型进行求解;最后,设计了多组算例验证所提方法的有效性。【结果】结果表明,所提考虑下垂控制的动态互联微电网技术可将故障期间切负荷比例降低至不考虑动态互联微电网技术的30%,能在保障负荷恢复安全性的基础上降低故障期间的切负荷比例。【结论】所提方法为配电网在极端事件下的供电恢复提供了重要参考。

Abstract

[Objective] After multiple line failures, a distribution network can maintain load supply by forming multiple microgrids. The initial formation and subsequent dynamic interconnection of microgrids require consideration of frequency-voltage control and sequential coordinated output of various types of resources. Hence, this paper proposes a multi-source sequential coordinated power-supply recovery method for post-disaster distribution networks, incorporating droop-control-based dynamic networked microgrid technology and network reconfiguration methods. [Methods] First, a pre-disaster electric vehicle dispatch model is established, considering the impact of impending extreme events on user travel intentions. Subsequently, a sequential power-supply recovery model is established that comprehensively considers the output of distributed resources, reverse charging of electric vehicles, repair crew dispatch, and flexible load management with the integration of frequency-voltage control constraints. Finally, multiple sets of examples are designed to validate the proposed method. [Results] The dynamic networked microgrid technology incorporating droop control can reduce the load-shedding ratio during faults to 30% of that without considering dynamic interconnections. [Conclusions] This effectively lowers the amount of load shedding while ensuring the safety of load restoration, providing an important reference for power-supply recovery of distribution networks under extreme events.

关键词

供电恢复 / 动态互联微电网 / 网络重构 / 电动汽车 / 下垂控制

Key words

power supply recovery / dynamic networked microgrids / network reconfiguration / electric vehicle / droop control

引用本文

导出引用
王治然, 杨祺铭, 黄玉雄, . 考虑动态互联微电网与网络重构的弹性配电网多源序贯协同供电恢复方法[J]. 电力建设. 2025, 46(9): 13-26 https://doi.org/10.12204/j.issn.1000-7229.2025.09.002
WANG Zhiran, YANG Qiming, HUANG Yuxiong, et al. Multi-Source Sequential Coordinated Power-Supply Recovery Method for Resilient Distribution Networks Considering Dynamic Networked Microgrids and Network Reconfiguration[J]. Electric Power Construction. 2025, 46(9): 13-26 https://doi.org/10.12204/j.issn.1000-7229.2025.09.002
中图分类号: TM73   

参考文献

[1]
别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9): 2735-2745.
BIE Zhaohong, LIN Chaofan, LI Gengfeng, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735-2745.
[2]
杨祺铭, 李更丰, 别朝红, 等. 计及间歇性新能源的弹性城市电网输配电协同供电恢复方法[J]. 高电压技术, 2023, 49(7): 2764-2774.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Coordinated power supply restoration method of resilient urban transmission and distribution networks considering intermittent new energy[J]. High Voltage Engineering, 2023, 49(7): 2764-2774.
[3]
CHEN B, WANG J H, LU X N, et al. Networked microgrids for grid resilience, robustness, and efficiency: a review[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 18-32.
[4]
杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12): 130-139.
[5]
刘达夫, 钟剑, 杨祺铭, 等. 基于V2G与应急通信的配电网信息物理协同快速恢复方法[J]. 电力系统自动化, 2024, 48(7): 147-158.
LIU Dafu, ZHONG Jian, YANG Qiming, et al. Fast recovery method for distribution network through cyber-physical collaboration based on vehicle to grid and emergency communication[J]. Automation of Electric Power Systems, 2024, 48(7): 147-158.
[6]
李明昊, 杨祺铭, 李更丰, 等. 台风场景下基于多种分布式资源协同的弹性配电网两阶段供电恢复策略[J]. 高电压技术, 2024, 50(1): 93-104.
LI Minghao, YANG Qiming, LI Gengfeng, et al. Two-stage power supply restoration strategy of resilient distribution network based on coordination of multiple distributed resources in typhoon scenario[J]. High Voltage Engineering, 2024, 50(1): 93-104.
[7]
祝昊, 付炜, 谢海鹏, 等. 考虑元件故障位置不确定性的维修队预调度与灾后派遣方法[J]. 电力自动化设备, 2024, 44(6): 161-168.
ZHU Hao, FU Wei, XIE Haipeng, et al. Repair crew pre-scheduling and post-disaster dispatch method considering uncertainty of component fault location[J]. Electric Power Automation Equipment, 2024, 44(6): 161-168.
[8]
BIAN Y H, SUN S Y, LI G F, et al. A generic Bayesian method for faulted section identification in distribution systems against wind-induced extreme events[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 1821-1836.
[9]
王月汉, 刘文霞, 姚齐, 等. 面向配电网韧性提升的移动储能预布局与动态调度策略[J]. 电力系统自动化, 2022, 46(15): 37-45.
WANG Yuehan, LIU Wenxia, YAO Qi, et al. Pre-layout and dynamic scheduling strategy of mobile energy storage for resilience enhancement of distribution network[J]. Automation of Electric Power Systems, 2022, 46(15): 37-45.
[10]
HUSSAIN A, BUI V H, KIM H M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience[J]. Applied Energy, 2019, 240: 56-72.
[11]
GHOBADI M, KENARI M T, SEPASIAN M S, et al. Application of networked microgrids for distribution system restoration after natural disasters[C]// 2023 IEEE AFRICON. IEEE, 2023: 1-6.
[12]
周文俊, 李泽, 丁波, 等. 新能源高占比电力系统并行恢复分区划分[J]. 浙江电力, 2024, 43(11): 74-89.
ZHOU Wenjun, LI Ze, DING Bo, et al. Partitioning of high-penetration renewable energy power systems for parallel restoration[J]. Zhejiang Electric Power, 2024, 43(11): 74-89.
[13]
李先锋, 胡晨刚, 卜莉敏, 等. 考虑应急电源功能的住宅小区微电网运行策略[J]. 浙江电力, 2024, 43(3): 104-113.
LI Xianfeng, HU Chengang, BU Limin, et al. An operational strategy for residential microgrids considering emergency power source functionality[J]. Zhejiang Electric Power, 2024, 43(3): 104-113.
[14]
张磐, 唐萍, 丁一, 等. 考虑分布式发电波动性的有源配电网故障恢复策略[J]. 电力系统及其自动化学报, 2018, 30(1): 115-120.
ZHANG Pan, TANG Ping, DING Yi, et al. Service restoration strategy considering the volatility of distribution generations for active distribution network[J]. Proceedings of the CSU-EPSA, 2018, 30(1): 115-120.
[15]
马晨霄, 刘洋, 许立雄, 等. 同时考虑孤岛与重构的配电网故障恢复运行策略[J]. 电力建设, 2018, 39(8): 128-136.
摘要
根据含分布式电源(distributed generation, DG)的配电网运行特点,提出一种综合考虑网络重构与孤岛划分的故障恢复运行策略。首先,通过对传统重构问题中相关约束的修改,使其允许切负荷操作与产生孤岛,并且使孤岛运行与重构操作相配合进行;然后,采用约束中0-1状态变量简化网络模型,提高运算效率;最后,采用二阶锥松弛技术将原始非凸非线性问题优化松弛为标准混合整数二阶锥规划(mixed integer second-order cone programming, MISOCP)问题,使其得以求解。算例结果证实了该策略的有效性,与其他算法的对比证实了该算法的优越性与准确性。
MA Chenxiao, LIU Yang, XU Lixiong, et al. Fault recovery operation strategy for distribution network coordinating islanding and reconfiguration[J]. Electric Power Construction, 2018, 39(8): 128-136.
According to the operating characteristics of active distribution network, a fault recovery strategy, which can rationally coordinate the distribution network reconfiguration with isolated island partitioning, is presented. Firstly, load cutting and island partitioning are permitted by changing the constraints of traditional network reconfiguration model. Then, 0-1 state variables in constraints are used to simplify the primary model and improve calculating efficiency. Finally, the second-order cone relaxation technique is adopted to convert the original nonconvex nonlinear problem into a mixed integer second-order cone programming (MISOCP) problem, which can be solved easily. Simulation results on modified IEEE 33-bus system show the effectiveness of the strategy. Comparisons with other algorithms demonstrate the superiority and accuracy of algorithm in this paper.
[16]
QIU D W, WANG Y, WANG J H, et al. Resilience-oriented coordination of networked microgrids: a shapley Q-value learning approach[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3401-3416.
[17]
HUSSAIN A, BUI V H, KIM H M. An effort-based reward approach for allocating load shedding amount in networked microgrids using multiagent system[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2268-2279.
[18]
ZHAO J, LI F X, SUN H Y, et al. Self-attention generative adversarial network enhanced learning method for resilient defense of networked microgrids against sequential events[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4369-4380.
[19]
IGDER M A, LIANG X D. Service restoration using deep reinforcement learning and dynamic microgrid formation in distribution networks[J]. IEEE Transactions on Industry Applications, 2023, 59(5): 5453-5472.
[20]
汤一达, 吴志, 顾伟, 等. 主动配电网故障恢复的重构与孤岛划分统一模型[J]. 电网技术, 2020, 44(7): 2731-2740.
TANG Yida, WU Zhi, GU Wei, et al. Research on active distribution network fault recovery strategy based on unified model considering reconstruction and island partition[J]. Power System Technology, 2020, 44(7): 2731-2740.
[21]
罗伟, 李长城, 琚上纯, 等. 考虑孤岛融合的配电系统多源协同恢复策略[J]. 电网技术, 2022, 46(4): 1485-1495.
LUO Wei, LI Changcheng, JU Shangchun, et al. Multi-source cooperative restoration strategy for distribution system considering islanding integration[J]. Power System Technology, 2022, 46(4): 1485-1495.
[22]
LIN C F, CHEN C, LIU F, et al. Dynamic MGs-based load restoration for resilient urban power distribution systems considering intermittent RESs and droop control[J]. International Journal of Electrical Power & Energy Systems, 2022, 140: 107975.
[23]
ZHAO T Q, CHEN B, ZHAO S J, et al. A flexible operation of distributed generation in distribution networks with dynamic boundaries[J]. IEEE Transactions on Power Systems, 2020, 35(5): 4127-4130.
[24]
史明明, 刘瑞煌, 张宸宇, 等. 考虑输电网与柔性互联配电网交互影响的可靠性评估方法[J]. 电力工程技术, 2024, 43(4): 77-87.
SHI Mingming, LIU Ruihuang, ZHANG Chenyu, et al. Analytical evaluation method of reliability considering interaction between transmission network and flexible interconnected distribution network[J]. Electric Power Engineering Technology, 2024, 43(4): 77-87.
[25]
徐秋童, 于艾清. 基于动态决策系统的黑启动灾后恢复路径优化[J]. 电力工程技术, 2023, 42(5): 185-194.
XU Qiutong, YU Aiqing. Optimization of post disaster recovery path of black start based on dynamic decision system[J]. Electric Power Engineering Technology, 2023, 42(5): 185-194.
[26]
傅守强, 陈翔宇, 张立斌, 等. 面向韧性提升的交直流混合配电网协同恢复方法[J]. 中国电力, 2023, 56(7): 95-106.
FU Shouqiang, CHEN Xiangyu, ZHANG Libin, et al. Coordinated restoration method of hybrid AC/DC distribution networks for resilience enhancement[J]. Electric Power, 2023, 56(7): 95-106.
[27]
孙典. 基于公众风险感知的台风预警信息排程研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
SUN Dian. Research on typhoon warning information scheduling based on public risk perception[D]. Harbin: Harbin Engineering University, 2018.
[28]
谢宇峥, 章德, 杨祺铭, 等. 台风灾害下考虑修复不确定性和V2G的弹性城市电网动态供电恢复方法[J]. 电网与清洁能源, 2024, 40(6): 107-114.
XIE Yuzheng, ZHANG De, YANG Qiming, et al. A dynamic power supply restoration method for resilient urban power grids considering repair uncertainty and V2G under typhoon disaster[J]. Power System and Clean Energy, 2024, 40(6): 107-114.
[29]
林超凡, 陈晨, 别朝红, 等. 含动态不确定性与频率电压控制的城市配电网灾后负荷恢复方法[J]. 电力系统自动化, 2022, 46(17): 56-64.
LIN Chaofan, CHEN Chen, BIE Zhaohong, et al. Post-disaster load restoration method for urban distribution network with dynamic uncertainty and frequency-voltage control[J]. Automation of Electric Power Systems, 2022, 46(17): 56-64.
[30]
GUERRERO J M, VASQUEZ J C, MATAS J, et al. Hierarchical control of droop-controlled AC and DC microgrids: a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 158-172.
[31]
杨祺铭, 季陈林, 刘友波, 等. 多条公交线路的光储充电站日内滚动优化策略[J]. 智慧电力, 2020, 48(8): 44-50, 90.
YANG Qiming, JI Chenlin, LIU Youbo, et al. Day-rolling optimization strategy for photovoltaic-energy storage charging station with multiple electric bus lines[J]. Smart Power, 2020, 48(8): 44-50, 90.
[32]
赵冬梅, 宋原, 王云龙, 等. 考虑柔性负荷响应不确定性的多时间尺度协调调度模型[J]. 电力系统自动化, 2019, 43(22): 21-30.
ZHAO Dongmei, SONG Yuan, WANG Yunlong, et al. Coordinated scheduling model with multiple time scales considering response uncertainty of flexible load[J]. Automation of Electric Power Systems, 2019, 43(22): 21-30.
[33]
DING T, LIN Y L, LI G F, et al. A new model for resilient distribution systems by microgrids formation[J]. IEEE Transactions on Power Systems, 2017, 32(5): 4145-4147.
[34]
DING T, LI F X, LI X, et al. Interval radial power flow using extended DistFlow formulation and Krawczyk iteration method with sparse approximate inverse preconditioner[J]. IET Generation, Transmission & Distribution, 2015, 9(14): 1998-2006.
[35]
吴文仙, 韩冬, 孙伟卿, 等. 考虑韧性增强策略的配电网负荷恢复优化[J]. 电力科学与工程, 2019, 35(4): 17-24.
摘要
极端灾害事件容易导致大规模停电故障,对配电网的安全运行带来风险和挑战。微电网接入配电网的形式具有分散性、灵活性等特点,且在配电网故障后具有持续供电的优势,能够增强配电网的运行韧性。首先利用微电网建立以韧性最大化为目标的负荷供电恢复模型,实现了对配电网内部关键负荷及其他各类负荷供电的最优恢复。然后针对数学模型表现出的非线性特点,利用分段线性化方法对模型中潮流约束进行线性化处理,将配电网负荷恢复模型转化为混合整数线性规划问题。通过IEEE-33节点系统进行算例分析,仿真结果验证了所提模型及方法的有效性、合理性。
WU Wenxian, HAN Dong, SUN Weiqing, et al. Load restoration optimization of distribution systems considering resilience enhancement strategy[J]. Electric Power Science and Engineering, 2019, 35(4): 17-24.
The large-scale power outages caused by extreme disaster events in the distribution power grid will bring risks and challenges to the safe operation of distribution networks. The micro-grid(MGs) connected to distribution networks has the characteristics of decentralization, flexibility, etc., and has the advantage of supplying electric power continuously after the failure, which can enhance the operational resilience of the distribution networks. First, a load power supply recovery model which aims at maximizing resilience is established with integration of MGs. This model achieves the optimal recovery of key load and other types of load power supply in distribution networks. Then for the nonlinear characteristics of the proposed mathematical model, the piecewise linearization method is used to linearize the power flow constraints. Hence, the load recovery model for the distribution network is transformed into a mixed integer linear programming problem. Taking the IEEE-33 node system as the tested system, the simulation result verifies the effectiveness and feasibility of the proposed approach in this article.
[36]
CHEN C, WANG J H, QIU F, et al. Resilient distribution system by microgrids formation after natural disasters[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 958-966.

基金

国家自然科学基金联合基金集成项目(U23B600006)
国家自然科学基金优秀青年科学基金项目(52222705)
国家自然科学基金青年基金项目(52307137)

编辑: 景贺峰
PDF(2333 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/