融合路网-气象-日期多特征信息的电动汽车充电负荷预测

胡枭, 张泽朕, 杨家全, 杨金铎, 和学豪, 王闯

电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 57-70.

PDF(5239 KB)
PDF(5239 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 57-70. DOI: 10.12204/j.issn.1000-7229.2025.09.005
规划建设

融合路网-气象-日期多特征信息的电动汽车充电负荷预测

作者信息 +

Electric Vehicle Charging Load Forecasting by Integrating Multi-Feature Information of Road Network, Meteorology, and Date

Author information +
文章历史 +

摘要

【目的】针对电动汽车多充电站在城市路网中布点分散、相互耦合导致负荷预测难度大的问题,提出一种融合路网、气象和日期特征的联合预测模型,旨在提高多充电站负荷预测的精度和效率,为新型电力系统的经济调度和高效运行提供技术支持。【方法】采用改进的迪杰斯特拉算法构建充电站之间的空间关联网络,通过图卷积神经网络(graph convolutional network, GCN)融合路网特征,气象变量通过斯皮尔曼秩相关系数筛选关键特征,日期特征以二进制编码表示工作日与非工作日的差异,并引入基于Mamba的选择性状态空间模型(selective state space model, SSSM)以捕捉长期时序特征并降低Transformer模型在长期预测中的高计算复杂度。【结果】以吉林省某市45个充电站的实际运行数据为样本进行验证,结果表明GCN-Mamba模型能够有效捕捉充电站之间的相互影响以及气象、日期等外部因素的作用,其均方根误差和平均绝对误差较传统模型显著降低,计算时间相比Transformer模型减少约30%,展现了优越性能。【结论】GCN-Mamba模型在电动汽车多充电站负荷预测中表现出高精度和高效性,创新性地融合路网空间关联和选择性状态空间模型,为新型电力系统负荷预测提供了新思路;但研究样本数据局限于单一城市,未来可扩展至多城市、多场景验证,并优化模型对极端天气条件的适应性。

Abstract

[Objective] To address the challenge of load forecasting for multiple spatially dispersed and mutually coupled electric vehicle charging stations in urban road networks, a joint forecasting model integrating road network, meteorological, and data features is proposed. This model aims to enhance the accuracy and efficiency of multistation load forecasting, providing technical support for the economic dispatch and efficient operation of new power systems (NPSs). [Methods] The model employs an improved Dijkstra algorithm to construct a spatial correlation network among charging stations and utilizes a graph convolutional network (GCN) to integrate road network features. Meteorological variables were selected using the Spearman rank correlation coefficient, and date features were binary-encoded to distinguish between weekdays and non-weekdays. To mitigate the high computational complexity of transformer models in long-term forecasting, a selective state-space model (SSSM) based on Mamba was introduced to capture long-term temporal features while reducing computational demands. [Results] The model was validated using operational data from 45 charging stations in a city in the Jilin Province. The results demonstrate that the GCN-Mamba model effectively captures inter-station interactions and the impacts of external factors such as meteorology and dates. Its root mean square error (RMSE) and mean absolute error (MAE) were significantly lower than those of traditional models, and its computation time was reduced by approximately 30% compared with transformer models, indicating superior performance in multistation load forecasting. [Conclusions] The GCN-Mamba model innovatively combines road network spatial correlations with the SSSM and offers a novel approach for NPS load forecasting. Furthermore, it exhibits high accuracy and efficiency. However, this study is limited by the use of a single-city dataset. Future work should include multi-city and multi-scenario validations, as well as improvements to the adaptability of the model under extreme weather conditions.

关键词

电动汽车 / 多充电站负荷联合预测 / 图卷积神经网络 / 选择性状态空间模型 / 多特征融合

Key words

electric vehicle / joint load prediction of multiple charging stations / graph convolutional neural network / selective state-space model / multifeature fusion

引用本文

导出引用
胡枭, 张泽朕, 杨家全, . 融合路网-气象-日期多特征信息的电动汽车充电负荷预测[J]. 电力建设. 2025, 46(9): 57-70 https://doi.org/10.12204/j.issn.1000-7229.2025.09.005
HU Xiao, ZHANG Zezhen, YANG Jiaquan, et al. Electric Vehicle Charging Load Forecasting by Integrating Multi-Feature Information of Road Network, Meteorology, and Date[J]. Electric Power Construction. 2025, 46(9): 57-70 https://doi.org/10.12204/j.issn.1000-7229.2025.09.005
中图分类号: TM715   

参考文献

[1]
DENG S, CHEN F L, WU D, et al. Quantitative combination load forecasting model based on forecasting error optimization[J]. Computers and Electrical Engineering, 2022, 101: 108125.
[2]
秦建华, 潘崇超, 张璇, 等. 基于充电行为分析的电动汽车充电负荷预测[J]. 电测与仪表, 2023, 60(4): 19-26.
QIN Jianhua, PAN Chongchao, ZHANG Xuan, et al. Charging load forecast of electric vehicle based on analysis of charging behavior[J]. Electrical Measurement & Instrumentation, 2023, 60(4): 19-26.
[3]
林彦旭, 高辉. 基于SSA-VMD-BiLSTM模型的充电站负荷预测方法[J]. 广东电力, 2024, 37(6): 53-61.
LIN Yanxu, GAO Hui. Load prediction method of charging station based on SSA-VMD-BiLSTM model[J]. Guangdong Electric Power, 2024, 37(6): 53-61.
[4]
王俊波, 李新, 梁年柏, 等. 电动汽车充电系统集群接入配电网谐波谐振机理分析[J]. 供用电, 2024, 41(10): 50-59.
WANG Junbo, LI Xin, LIANG Nianbai, et al. Analysis of harmonic resonance mechanism of electric vehicle charging system cluster connected to distribution network[J]. Distribution & Utilization, 2024, 41(10): 50-59.
[5]
陈晓华, 吴杰康, 张勋祥, 等. 基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测[J]. 山东电力技术, 2024, 51(7): 1-9.
CHEN Xiaohua, WU Jiekang, ZHANG Xunxiang, et al. Electric vehicle charging load short-term prediction based on generalized regression neural network optimized by pelican optimization algorithm[J]. Shandong Electric Power, 2024, 51(7): 1-9.
[6]
丁乐言, 柯松, 张帆, 等. 考虑出行需求和引导策略的电动汽车充电负荷预测[J]. 电力建设, 2024, 45(6): 10-26.
摘要
随着电动汽车逐步替代燃料汽车,电动汽车充电负荷对电网造成的影响也越来越大,为此提出了一种考虑出行需求与引导策略的电动汽车充电负荷时空分布预测方法。首先,基于路段通行时间模型建立划分功能区域的半动态交通网模型;进一步,建立电动汽车能耗模型,在分析电价、气候和季节等因素对车主出行需求影响的同时,对充电需求、半动态交通网模型、能耗模型以及传统出行链进行修正;然后,考虑外部因素影响下车主的有限理性,提出引导策略下私家车和出租车充电负荷预测方法;最后,在半动态交通网模型中用改进的出行链和起讫点(origin-destination, OD)矩阵分别模拟私家车和出租车研究时间内的出行行为,通过在划分区域的半动态交通网仿真,验证了所提出的电动汽车充电负荷时空分布预测方法的有效性。仿真结果也表明电动汽车充电负荷时空分布预测情况与对外部影响因素的分析相符,同时提出的引导策略能提升车主决策的满意程度。
DING Leyan, KE Song, ZHANG Fan, et al. Forecasting of electric-vehicle charging load considering travel demand and guidance strategy[J]. Electric Power Construction, 2024, 45(6): 10-26.
 With electric vehicles (EVs) gradually replacing fueled vehicles, the impact of their charging load on the power grid is increasing. Therefore, this study proposes a spatial-temporal distribution prediction method for the charging load of EVs that considers travel demand and a guidance strategy. First, a semi-dynamic traffic network model that divides functional areas was developed based on a road travel time model. Furthermore, an energy-consumption model of EVs was established, and the charging demand, semi-dynamic transportation network model, energy consumption model, and traditional travel chain were revised according to the influence of the electricity price, climate, and season on the travel demand of vehicle owners. Considering the limited rationality of vehicle owners based on the influence of external factors, a charging load prediction method for private cars and taxis based on a guidance strategy is proposed. Finally, the modified trip chain and OD matrix were used to simulate the travel behavior of private cars and taxis, respectively, in the semi-dynamic traffic network model during the study period, and the validity of the proposed prediction method was verified through a simulation experiment of the semi-dynamic traffic network in the divided regions. The results show that the spatial-temporal distribution of the charging load for EVs is consistent with the analysis of external influencing factors, and the proposed guidance strategy can improve the satisfaction of vehicle owners. 
[7]
庄立生. 融合气象特征的BP神经网络电力系统短期负荷预测[J]. 山东电力技术, 2023, 50(11): 51-59.
ZHUANG Lisheng. Short-term load forecasting for power systems based on BP neural networks[J]. Shandong Electric Power, 2023, 50(11): 51-59.
[8]
邓立, 耿琳, 肖伟栋, 等. 气象因子动态自适应的短期负荷预测方法[J]. 分布式能源, 2024, 9(3): 73-81.
DENG Li, GENG Lin, XIAO Weidong, et al. Short-term load forecasting method based on dynamic adaptation of meteorological factors[J]. Distributed Energy, 2024, 9(3): 73-81.
[9]
张时聪, 杨芯岩, 韩少锋, 等. 综合能源系统源-荷能量的多时间尺度预测[J]. 分布式能源, 2024, 9(4): 1-10.
ZHANG Shicong, YANG Xinyan, HAN Shaofeng, et al. Multi-timescale prediction of source-load energy in integrated energy system[J]. Distributed Energy, 2024, 9(4): 1-10.
[10]
DENG S, WANG J J, TAO L, et al. EV charging load forecasting model mining algorithm based on hybrid intelligence[J]. Computers and Electrical Engineering, 2023, 112: 109010.
[11]
王长春, 王果, 赵倩宇, 等. 考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法[J]. 南方电网技术, 2024, 18(5): 75-84.
WANG Changchun, WANG Guo, ZHAO Qianyu, et al. A short-term load forecasting method for large scale electric vehicle charging stations considering characteristics of charging utilization rate and time-of-use electricity price[J]. Southern Power System Technology, 2024, 18(5): 75-84.
[12]
闫照康, 马刚, 冯瑞, 等. 基于改进LSTM算法的综合能源系统多元负荷预测[J]. 分布式能源, 2024, 9(2): 30-38.
YAN Zhaokang, MA Gang, FENG Rui, et al. Multiple load forecasting of integrated energy system based on improved LSTM algorithm[J]. Distributed Energy, 2024, 9(2): 30-38.
[13]
ALHUSSEIN M, AURANGZEB K, HAIDER S I. Hybrid CNN-LSTM model for short-term individual household load forecasting[J]. IEEE Access, 2020, 8: 180544-180557.
[14]
雷国平, 邓立, 蔡黎, 等. 考虑多影响因素的电动汽车充电负荷预测[J]. 制造业自动化, 2024, 46(5): 128-133.
摘要
针对电动汽车数量呈突变式增长的问题,通过分析私人电动汽车保有量的相关影响因素,利用关联分析法筛选出公共充电桩数量、人均可支配收入、人均消费支出、第二产业投资额增长率和总私人电动汽车数量五个因素,建立了引入自适应系数r的灰色模型(GM(1,N))。与现有的预测模型结果进行对比,证实了所建立模型的优越性。此外,根据重庆市充电站提供的数据,建立了私人电动汽车日充电负荷模型,采用蒙特卡洛法得出私人电动汽车在2021年和2025年保有量下的日充电负荷,渗透率分别达到为0.4%和0.85%。最后,引入IEEE33节点系统分析电动汽车在不同渗透率下充电负荷对电网的影响程度。结果显示高渗透率下对电网电压造成的波动较大,网损增加近160倍,降低了能源利用率,为重庆市未来规划电动汽车充电提供了有效的数据参考。
LEI Guoping, DENG Li, CAI Li, et al. Multiple influencing factors based charging load forecasting of electric vehicle[J]. Manufacturing Automation, 2024, 46(5): 128-133.
针对电动汽车数量呈突变式增长的问题,通过分析私人电动汽车保有量的相关影响因素,利用关联分析法筛选出公共充电桩数量、人均可支配收入、人均消费支出、第二产业投资额增长率和总私人电动汽车数量五个因素,建立了引入自适应系数r的灰色模型(GM(1,N))。与现有的预测模型结果进行对比,证实了所建立模型的优越性。此外,根据重庆市充电站提供的数据,建立了私人电动汽车日充电负荷模型,采用蒙特卡洛法得出私人电动汽车在2021年和2025年保有量下的日充电负荷,渗透率分别达到为0.4%和0.85%。最后,引入IEEE33节点系统分析电动汽车在不同渗透率下充电负荷对电网的影响程度。结果显示高渗透率下对电网电压造成的波动较大,网损增加近160倍,降低了能源利用率,为重庆市未来规划电动汽车充电提供了有效的数据参考。
[15]
KOOHFAR S, WOLDEMARIAM W, KUMAR A. Prediction of electric vehicles charging demand: a transformer-based deep learning approach[J]. Sustainability, 2023, 15(3): 2105.
[16]
程超, 葛维, 郭兰柯, 等. 基于深度学习的新型电力智能交互平台多任务集成模型研究[J]. 电测与仪表, 2023, 60(6): 81-85, 109.
CHENG Chao, GE Wei, GUO Lanke, et al. Research on multi-task ensemble model based on deep learning for novel power intelligent interaction platform[J]. Electrical Measurement & Instrumentation, 2023, 60(6): 81-85, 109.
[17]
HU X, ZHANG Z Z, FAN Z Y, et al. GCN-transformer-based spatio-temporal load forecasting for EV battery swapping stations under differential couplings[J]. Electronics, 2024, 13(17): 3401.
[18]
马军伟, 霍美如, 赵敏, 等. 融合数据驱动和充电行为的电动汽车能耗预测方法[J]. 电气工程学报, 2024, 19(1): 97-105.
MA Junwei, HUO Meiru, ZHAO Min, et al. Energy consumption prediction method for electric vehicles by integrating charging behavior with data-driven method[J]. Journal of Electrical Engineering, 2024, 19(1): 97-105.
[19]
KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[J]. Computer Science and Exploration, 2016, 10(9): 1-15.
[20]
王琨, 高敬更, 张勇红, 等. 基于LSTM神经网络的复合变量电动汽车充电负荷预测方法技术研究[J]. 工业仪表与自动化装置, 2019(1): 27-31.
WANG Kun, GAO Jinggeng, ZHANG Yonghong, et al. Study on forecasting method of charging load of hybrid variable electric vehicle based on LSTM neural network[J]. Industrial Instrumentation & Automation, 2019(1): 27-31.
[21]
吴红波, 王英杰, 杨肖肖. 基于Dijkstra算法优化的城市交通路径分析[J]. 北京交通大学学报, 2019, 43(4): 116-121, 130.
摘要
为降低运输、时间和距离成本,需合理地规划城市车辆行驶线路.以汉中市主城区道路网络为例,考虑选线过程中道路风险阻强和路况因素,利用网络拓扑、地理编码和网络分析,基于Dijkstra算法优化对车辆行驶路线进行选择,并对最优路线进行分析与验证.结果表明:GIS网络分析与Dijkstra算法的有效集成不但可实现城市车辆行驶路线优化决策,而且Dijkstra算法优化能减少节点访问次数和时间复杂度.在行驶时间和距离约束条件下,限速、道路等级、路况信息是制约选线的主要因素,其图形化结果可以为驾驶员的驾车出行、交通管理部门决策提供技术支持和参考.
WU Hongbo, WANG Yingjie, YANG Xiaoxiao. Analysis of urban traffic vehicle routing based on Dijkstra algorithm optimization[J]. Journal of Beijing Jiaotong University, 2019, 43(4): 116-121, 130.
In order to reduce the transportation cost, time duration and distance cost, the route network of urban vehicles was reasonably planned. The paper employed the road network of the main urban area of Hanzhong City as an example, considering the risk resistance and road condition factors in the road planning, which the road selection and optimization under various constraints were jointly built on the basis of Dijkstra algorithm. The analysis and realization were verified with the geocoding, network topology and GIS network analysis tools. The results show that the integration of GIS network analysis technology and Dijkstra algorithm not only realize the optimization decision of urban vehicle route, but also the improved Dijkstra algorithm reduces the number of node visiting and time complexity. Under the driving time and distance constraints, the speed limit, road hierarchy and road condition are the restrictive factors of the line selection. The graphical description could provide a technical support and reference for the driver’s driving strip and traffic management department decision-making.
[22]
曹佳佳, 王淳, 霍崇辉, 等. 考虑配电网负荷波动和电压偏移的充电站优化规划[J]. 电力科学与技术学报, 2021, 36(4): 12-19.
CAO Jiajia, WANG Chun, HUO Chonghui, et al. Optimal planning of electric vehicle charging stations considering the load fluctuation and voltage offset of distribution network[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 12-19.
[23]
于群, 霍筱东, 何剑, 等. 基于斯皮尔曼相关系数和系统惯量的中国电网停电事故趋势预测[J]. 中国电机工程学报, 2023, 43(14): 5372-5381.
YU Qun, HUO Xiaodong, HE Jian, et al. Trend prediction of power blackout accidents in Chinese power grid based on Spearman’s correlation coefficient and system inertia[J]. Proceedings of the CSEE, 2023, 43(14): 5372-5381.
[24]
陈丽丹, 张尧, FIGUEIREDO A. 融合多源信息的电动汽车充电负荷预测及其对配电网的影响[J]. 电力自动化设备, 2018, 38(12): 1-10.
CHEN Lidan, ZHANG Yao, FIGUEIREDO A. Charging load forecasting of electric vehicles based on multi-source information fusion and its influence on distribution network[J]. Electric Power Automation Equipment, 2018, 38(12): 1-10.
[25]
LEE B, LEE H, AHN H. Improving load forecasting of electric vehicle charging stations through missing data imputation[J]. Energies, 2020, 13(18): 4893.
[26]
崔星, 李晋国, 张照贝, 等. 基于改进粒子群算法优化LSTM的短期电力负荷预测[J]. 电测与仪表, 2024, 61(1): 131-136.
CUI Xing, LI Jinguo, ZHANG Zhaobei, et al. The short-term power load forecasting based on NIWPSO-LSTM neural network[J]. Electrical Measurement & Instrumentation, 2024, 61(1): 131-136.
[27]
LIU F T, TING K M, ZHOU Z H. Isolation forest[C]// 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008: 413-422.
[28]
蒙哥马利 D C. 统计质量控制导论[M]. 北京: 机械工业出版社, 2017.
MONTGOMERY D C. Introduction to statistical quality control[M]. Beijing: China Machine Press, 2017.
[29]
邵瑞·H, 斯托费尔·D S. 时间序列分析及其应用:带R实例[M]. 北京: 机械工业出版社, 2017.
SHUMWAY H, STOFFER D S. Time series analysis and its applications: with R examples[M]. Beijing: China Machine Press, 2017.
[30]
HOLT C C. Forecasting seasonals and trends by exponentially weighted moving averages[J]. International Journal of Forecasting, 2004, 20(1): 5-10.
[31]
DUONG-TRUNG N, NGUYEN D M, LE-PHUOC D. Temporal saliency detection towards explainable transformer-based timeseries forecasting[C]// Artificial Intelligence. ECAI 2023 International Workshops. Cham: Springer Nature Switzerland, 2024: 250-268.
[32]
AGGA A, ABBOU A, LABBADI M, et al. CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric Power Systems Research, 2022, 208: 107908.
[33]
REN Y, WANG S Y, XIA B S. Deep learning coupled model based on TCN-LSTM for particulate matter concentration prediction[J]. Atmospheric Pollution Research, 2023, 14(4): 101703.

基金

国家重点研发计划资助项目(2023YFB2407300)

编辑: 魏希辉
PDF(5239 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/