计及负荷等效惯量的新型电力系统机组组合安全优化方法

宋嘉雯, 王琦, 王亚伦, 夏宇翔, 汤奕

电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 111-119.

PDF(1442 KB)
PDF(1442 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 111-119. DOI: 10.12204/j.issn.1000-7229.2025.09.009
调度运行

计及负荷等效惯量的新型电力系统机组组合安全优化方法

作者信息 +

Security Optimization Method for Unit Commitment in New Power Systems Considering Load Equivalent Inertia

Author information +
文章历史 +

摘要

【目的】随着新型电力系统建设推进,新能源机组逐步替代传统火电机组,电源侧惯量水平持续下降,负荷侧的频率惯量支撑作用愈发重要。因此,有必要在常规机组组合优化中进一步考虑源荷两侧的惯量协同优化配置。【方法】首先分析了负荷侧的等效惯量支撑能力,提出了考虑负荷惯量响应策略的系统惯量计算方法。在此基础上,提出了基于系统初始频率变化率和频率最低点的最小惯量评估方法,并针对所提负荷响应策略和最小惯量评估结果,建立机组组合安全优化模型。【结果】算例结果表明,所提方法在满足系统频率安全约束的同时,降低系统对常规机组惯量的依赖,优化系统源荷惯量资源配置,从而在确保电网安全运行的前提下,显著提升系统的整体运行经济性。【结论】负荷侧可控资源通过其快速响应能力可为电力系统提供灵活的等效惯量支撑,有效缓解频率跌落问题,降低系统运行成本。

Abstract

[Objective] With the advancements in the construction of new power systems, renewable energy units are gradually replacing traditional thermal power units. The inertia level on the generation side continues to decline, and the frequency of the inertial support on the load side is becoming increasingly important. Therefore, it is necessary to incorporate coordinated inertia optimization between generation and load sides into conventional unit commitment processes. [Methods] In this study, the equivalent inertial support capacity of the load side was theoretically analyzed, and a calculation method for the system inertia considering load inertial response strategies was proposed. Building on this foundation, a method for assessing the minimum inertia based on the initial rate of frequency change and frequency nadir was proposed. An optimal unit commitment safety model was established based on the proposed load-response strategy and minimum inertia assessment results. [Results] Case studies demonstrated that the proposed method can satisfy system frequency security constraints, while reducing the reliance on conventional unit inertia and optimizing the allocation of inertial resources between the generation and load sides. Consequently, the overall operational economy of the system was significantly improved without compromising grid security. [Conclusions] Controllable resources on the load side can provide flexible equivalent inertia support through their rapid response capabilities, effectively mitigating frequency decline and reducing system operating costs.

关键词

系统频率响应 / 机组组合优化 / 频率安全 / 负荷等效惯量

Key words

system frequency response / unit commitment optimization / frequency security / load-equivalent inertia

引用本文

导出引用
宋嘉雯, 王琦, 王亚伦, . 计及负荷等效惯量的新型电力系统机组组合安全优化方法[J]. 电力建设. 2025, 46(9): 111-119 https://doi.org/10.12204/j.issn.1000-7229.2025.09.009
SONG Jiawen, WANG Qi, WANG Yalun, et al. Security Optimization Method for Unit Commitment in New Power Systems Considering Load Equivalent Inertia[J]. Electric Power Construction. 2025, 46(9): 111-119 https://doi.org/10.12204/j.issn.1000-7229.2025.09.009
中图分类号: TM712   

参考文献

[1]
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[2]
和萍, 宫智杰, 靳浩然, 等. 高比例可再生能源电力系统调峰问题综述[J]. 电力建设, 2022, 43(11): 108-121.
摘要
随着可再生能源在电力系统中所占的比例日益提高,电力系统的电源结构发生了巨大变化,可再生能源的高渗透性、出力的随机性和不确定性,使得电源侧、负荷侧对电力系统调峰资源需求问题逐渐凸显。首先,总结可再生能源时序发电特性和空间分布特性,对高比例可再生能源电力系统的调峰问题进行了说明。然后,对多种调峰储能类型的配备、特点、发展趋势等研究成果进行总结与归纳,对需求侧参与电力系统调峰方式进行归纳总结,包括需求响应建设、发展电力市场和辅助调峰服务市场以及增强电力传输能力。最后,对未来高比例可再生能源电力系统调峰问题研究前景进行了讨论与展望。
HE Ping, GONG Zhijie, JIN Haoran, et al. Review of peak-shaving problem of electric power system with high proportion of renewable energy[J]. Electric Power Construction, 2022, 43(11): 108-121.

Power supply structure has undergone tremendous changes with the increasing proportion of renewable energy in the power system. The high permeability, randomness and uncertainty of the output of renewable energy cause problems increasingly prominent, such as demand of power system peak-shaving resources on both power supply and load side. Firstly, this paper summarizes temporal and spatial distribution characteristics of renewable energy, and explains the peak-shaving problem of power system with high proportion of renewable energy. Then, the equipment, characteristics and development trend of various peak-shaving energy storage types are summarized. The paper also elaborates the peak-shaving modes of the demand side in the power system, including demand response construction, power market and auxiliary peak-shaving service market, and enhancing power transmission capacity. Finally, the future research prospects of peak-shaving of power system with high proportion of renewable energy are discussed and prospected.

[3]
李志军, 郭燕龙, 苗庆玉. 基于解析法的高比例可再生能源系统惯量支撑储能配置[J]. 电测与仪表, 2023, 60(11): 11-18.
LI Zhijun, GUO Yanlong, MIAO Qingyu. High proportion of renewable energy storage system for inertial support energy storage configuration based on analytical method[J]. Electrical Measurement & Instrumentation, 2023, 60(11): 11-18.
[4]
文云峰, 张武其, 郭威. 电力系统惯量需求: 概念、指标及评估方法[J]. 电力系统自动化, 2024, 48(8): 30-41.
WEN Yunfeng, ZHANG Wuqi, GUO Wei. Inertia requirement of power system: concepts, indexes, and evaluation method[J]. Automation of Electric Power Systems, 2024, 48(8): 30-41.
[5]
林建熙, 刘必成, 肖晃庆, 等. 大规模海上风电接入的受端电网频率特性[J]. 广东电力, 2023, 36(3): 23-31.
LIN Jianxi, LIU Bicheng, XIAO Huangqing, et al. Frequency characteristics of receiving end power grid for large-scale offshore wind power access[J]. Guangdong Electric Power, 2023, 36(3): 23-31.
[6]
李书勇, 蔡海青, 沈娜, 等. 不同类型新能源接入对微电网频率的影响[J]. 分布式能源, 2024, 9(2): 8-18.
LI Shuyong, CAI Haiqing, SHEN Na, et al. Impact of different types of new energy access on microgrid frequency[J]. Distributed Energy, 2024, 9(2): 8-18.
[7]
ZHOU J G, GUO Y, YANG L, et al. A review on frequency management for low-inertia power systems: from inertia and fast frequency response perspectives[J]. Electric Power Systems Research, 2024, 228: 110095.
[8]
曲建璋, 丁浩天, 王毓琦, 等. 计及风电机组短时过载能力的风电场多机协同频率控制策略[J]. 山东电力技术, 2024, 51(10): 1-9.
QU Jianzhang, DING Haotian, WANG Yuqi, et al. Multiple turbines coordinated frequency control strategy for a wind farm considering the short-term overload capacity of wind turbines[J]. Shandong Electric Power, 2024, 51(10): 1-9.
[9]
贾文杰, 唐早, 曾平良, 等. 基于鲁棒模型预测控制的风火储联合系统调频优化策略[J]. 电测与仪表, 2023, 60(12): 27-35.
JIA Wenjie, TANG Zao, ZENG Pingliang, et al. Frequency regulation optimization strategy for wind-thermal-storage joint system based on robust model predictive control[J]. Electrical Measurement & Instrumentation, 2023, 60(12): 27-35.
[10]
孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192.
SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5192.
[11]
HU P F, LI Y J, YU Y X, et al. Inertia estimation of renewable-energy-dominated power system[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113481.
[12]
楼楠, 杨林, 肖逸, 等. 针对测量死区的光伏电源机械惯性与一次调频控制[J]. 供用电, 2024, 41(4): 96-104.
LOU Nan, YANG Lin, XIAO Yi, et al. Mechanical inertia and primary frequency control of PV power source aiming at measurement dead zone[J]. Distribution & Utilization, 2024, 41(4): 96-104.
[13]
郑云平, 亚夏尔·吐尔洪. 基于VSG技术的风: 光—储系统自适应调频控制策略研究[J]. 高压电器, 2023, 59(7): 12-19.
ZHENG Yunping, YAXAR·Turgun. Research on adaptive frequency modulation control strategy of wind-PV-storage system based on VSG technology[J]. High Voltage Apparatus, 2023, 59(7): 12-19.
[14]
SUN M, MIN Y, CHEN L, et al. Optimal auxiliary frequency control of wind turbine generators and coordination with synchronous generators[J]. CSEE Journal of Power and Energy Systems, 2021, 7(1): 78-85.
[15]
曾辉, 苏安龙, 葛延峰, 等. 考虑负荷特性的区域电网在线转动惯量快速估计算法[J]. 电网技术, 2023, 47(2): 423-436.
ZENG Hui, SU Anlong, GE Yanfeng, et al. Fast estimation algorithm for on-line moment of inertia of regional power grid considering load characteristics[J]. Power System Technology, 2023, 47(2): 423-436.
[16]
王玎, 袁小明. 异步电机机电时间尺度有效惯量评估及其对可再生能源并网系统频率动态的影响[J]. 中国电机工程学报, 2018, 38(24): 7258-7266, 7452.
WANG Ding, YUAN Xiaoming. Available inertia estimation of induction machine in electromechanical timescale and its effects on frequency dynamics of power systems with renewable energy[J]. Proceedings of the CSEE, 2018, 38(24): 7258-7266, 7452.
[17]
WILSON D, YU J, AL-ASHWAL N, et al. Measuring effective area inertia to determine fast-acting frequency response requirements[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 1-8.
[18]
任建锋, 颜云松, 罗剑波, 等. 毫秒级精准负荷控制系统设计与工程应用[J]. 电力工程技术, 2018, 37(1): 45-50.
REN Jianfeng, YAN Yunsong, LUO Jianbo, et al. The design of millisecond-level precisive load control system and engineering application[J]. Electric Power Engineering Technology, 2018, 37(1): 45-50.
[19]
李亚平, 姚建国, 雍太有, 等. 居民温控负荷聚合功率及响应潜力评估方法研究[J]. 中国电机工程学报, 2017, 37(19): 5519-5528, 5829.
LI Yaping, YAO Jianguo, YONG Taiyou, et al. Estimation approach to aggregated power and response potential of residential thermostatically controlled loads[J]. Proceedings of the CSEE, 2017, 37(19): 5519-5528, 5829.
[20]
缪蔡然, 江叶峰, 施琳, 等. 快速频率响应负荷参与惯量辅助服务能力评估及应用[J]. 电力系统自动化, 2024, 48(16): 99-108.
MIAO Cairan, JIANG Yefeng, SHI Lin, et al. Capability assessment and application of fast frequency response load participating in inertia auxiliary service[J]. Automation of Electric Power Systems, 2024, 48(16): 99-108.
[21]
ZHANG Z Y, DU E S, TENG F, et al. Modeling frequency dynamics in unit commitment with a high share of renewable energy[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4383-4395.
[22]
葛晓琳, 刘亚, 符杨, 等. 考虑惯量支撑及频率调节全过程的分布鲁棒机组组合[J]. 中国电机工程学报, 2021, 41(12): 4043-4058.
GE Xiaolin, LIU Ya, FU Yang, et al. Distributed robust unit commitment considering the whole process of inertia support and frequency regulations[J]. Proceedings of the CSEE, 2021, 41(12): 4043-4058.
[23]
PATURET M, MARKOVIC U, DELIKARAOGLOU S, et al. Stochastic unit commitment in low-inertia grids[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3448-3458.
[24]
李东东, 刘强, 徐波, 等. 考虑频率稳定约束的新能源电力系统临界惯量计算方法[J]. 电力系统保护与控制, 2021, 49(22): 24-33.
LI Dongdong, LIU Qiang, XU Bo, et al. New energy power system critical inertia estimation method considering frequency stability constraints[J]. Power System Protection and Control, 2021, 49(22): 24-33.
[25]
常东旭, 徐龙勋, 朱灵子, 等. 计及频率安全与充裕性风险约束的机组组合策略[J]. 南方电网技术, 2024, 18(5): 62-74.
CHANG Dongxu, XU Longxun, ZHU Lingzi, et al. Frequency and adequacy constrained unit commitment strategy[J]. Southern Power System Technology, 2024, 18(5): 62-74.
[26]
叶畅, 柳丹, 杨欣宜, 等. 基于最小惯量评估的高比例新能源电力系统优化运行策略[J]. 电网技术, 2023, 47(2): 502-516.
YE Chang, LIU Dan, YANG Xinyi, et al. Optimal operation strategy of high proportion new energy power system based on minimum inertia evaluation[J]. Power System Technology, 2023, 47(2): 502-516.
[27]
林恒先, 侯凯元, 陈磊, 等. 高比例风电电力系统考虑频率安全约束的机组组合[J]. 电网技术, 2021, 45(1): 1-13.
LIN Hengxian, HOU Kaiyuan, CHEN Lei, et al. Unit commitment of power system with high proportion of wind power considering frequency safety constraints[J]. Power System Technology, 2021, 45(1): 1-13.
[28]
朱晓荣, 韩啸. 储能电池与常规机组配合参与一次调频的自适应控制策略[J]. 电测与仪表, 2023, 60(9): 34-42.
ZHU Xiaorong, HAN Xiao. The adaptive control strategy of energy storage battery cooperating with conventional generating units to participate in primary frequency regulation[J]. Electrical Measurement & Instrumentation, 2023, 60(9): 34-42.
[29]
王若谷, 陈果, 王秀丽, 等. 计及风电与电动汽车随机性的两阶段机组组合研究[J]. 电力建设, 2021, 42(8): 63-70.
摘要
风电出力的随机性以及电动汽车(electric vehicle,EV)充电需求的不确定性给电力系统调度带来了挑战。在传统确定性机组组合模型的基础上,针对电力系统日前调度面临的不确定问题,提出了充分考虑风电与电动汽车双重不确定性的随机优化调度及备用计算模型。首先,对于风电出力不确定性,采用基于场景分析的两阶段随机优化方法,并使用生成对抗网络(generative adversarial network, GAN)来生成风电场景。其次,对于电动汽车充电需求的不确定性,将其分为可调度与不可调度两类。可调度电动汽车根据其出行规律采用随机模拟的方法,并建立了EV充电聚集商模型;不可调度电动汽车通过K-means聚类分析得到其典型负荷曲线,并将其并入系统常规负荷中。最终建立了基于多场景分析考虑EV充电聚集商的两阶段随机机组组合模型,并通过算例分析证明了所提模型的有效性。
WANG Ruogu, CHEN Guo, WANG Xiuli, et al. Two-stage stochastic unit commitment considering the uncertainty of wind power and electric vehicle travel patterns[J]. Electric Power Construction, 2021, 42(8): 63-70.

The uncertainty of wind power output and charging demand of electric vehicles (EVs) brings great challenge for power system dispatching. Taking day-ahead dispatch as the target, this paper proposes a stochastic optimization scheduling model and corresponding reserve model on the basis of traditional unit commitment model. Firstly, for the uncertainty of wind power output, a two-stage stochastic unit commitment model is established in this paper according to scenario analysis based on generative adversarial network (GAN), while electric vehicles are divided into two categories: schedulable and non-schedulable EVs. Monte-Carlo method is adopted to simulate the behavior and the dynamic change of schedulable EVs on the basis of probability distribution of the travel patterns, and the model of EV aggregators is established in this paper. As for non-schedulable EVs, K-means cluster analysis is adopted to get a typical load curve, and then the charging demand is viewed as part of conventional load. Case study demonstrates the validity of the proposed model.

[30]
江一航, 赵书强, 王慧, 等. 计及风电、调相机支撑特性的频率安全约束分布鲁棒机组组合调度方法[J]. 电工技术学报, 2025, 40(1): 80-95.
JIANG Yihang, ZHAO Shuqiang, WANG Hui, et al. Distributionally robust frequency constrained unit commitment with frequency support of wind power and synchronous condenser[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 80-95.
[31]
赵恩盛, 韩杨, 周思宇, 等. 微电网惯量与阻尼模拟技术综述及展望[J]. 中国电机工程学报, 2022, 42(4): 1413-1428.
ZHAO Ensheng, HAN Yang, ZHOU Siyu, et al. Review and prospect of inertia and damping simulation technologies of microgrids[J]. Proceedings of the CSEE, 2022, 42(4): 1413-1428.
[32]
李卫东, 丁奇力. 大扰动下电力系统惯性时空分布特性的表征形式初探[J]. 中国电机工程学报, 2024, 44(12): 4601-4615.
LI Weidong, DING Qili. A preliminary research on the representation form of spatial-temporal distribution characteristics of power system inertia under large disturbances[J]. Proceedings of the CSEE, 2024, 44(12): 4601-4615.
[33]
韩冰, 姚建国, 於益军, 等. 负荷主动响应应对特高压受端电网直流闭锁故障的探讨[J]. 电力系统自动化, 2016, 40(18): 1-6.
HAN Bing, YAO Jianguo, YU Yijun, et al. Discussion on active load response at receiving end power grid for mitigating UHVDC blocking fault[J]. Automation of Electric Power Systems, 2016, 40(18): 1-6.
[34]
刘华伟, 李虎成, 袁宇波, 等. 大规模源网荷友好互动系统实切试验技术[J]. 电力工程技术, 2017, 36(6): 1-6.
LIU Huawei, LI Hucheng, YUAN Yubo, et al. The actual load shedding verification test technology of large-scale “source-grid-load” friendly interactive system introduction[J]. Electric Power Engineering Technology, 2017, 36(6): 1-6.
[35]
中国政府网. 国内首套“大规模源网荷友好互动系统”投运电网事故应急处理能力提升至“毫秒级”[EB/OL].(2016-06-15).[2024-10-01]. https://www.gov.cn/xinwen/2016-06/15/content_5082494.htm.
[36]
北极星输配电网. 江苏首个负荷虚拟同步装置试运行[EB/OL].(2018-08-30).[2024-10-01]. https://news.bjx.com.cn/html/20180830/924417.shtml.
[37]
郑博文, 杨朋威, 姜传霏, 等. 考虑频率约束的新能源电网极限渗透率估计方法[J]. 广东电力, 2024, 37(10): 66-74.
ZHENG Bowen, YANG Pengwei, JIANG Chuanfei, et al. Estimation of extreme penetration rate of new energy grid considering frequency constraints[J]. Guangdong Electric Power, 2024, 37(10): 66-74.
[38]
江苏能源监管办. 江苏电力辅助服务管理实施细则[EB/OL]. (2022-08-01)[2024-10-01]. https://jsb.nea.gov.cn/eWebEditor/webpic/202246153135257.pdf.
[39]
国家能源局. 西北区域电力辅助服务管理实施细则[EB/OL]. (2023-11-22)[2024-10-01]. https://xbj.nea.gov.cn/dtyw/tzgg/202312/P020240328335885205485.pdf.
[40]
杨桂兴, 郭小龙, 孙谊媊, 等. 虚拟同步发电机频率偏差前馈阻尼控制策略的参数整定方法[J]. 高压电器, 2024, 60(10): 46-53.
YANG Guixing, GUO Xiaolong, SUN Yiqian, et al. Parameter tuning method of frequency deviation feedforward based damping control strategy for virtual synchronous generator[J]. High Voltage Apparatus, 2024, 60(10): 46-53.

基金

国家重点研发计划资助项目(2024YFB2408905)

编辑: 魏希辉
PDF(1442 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/