考虑有限信息背景下的风电场短期功率预测方法

余光正, 信德政, 吕辉清, 常云佳, 杨晓健

电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 130-143.

PDF(2353 KB)
PDF(2353 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (9) : 130-143. DOI: 10.12204/j.issn.1000-7229.2025.09.011
新能源与储能

考虑有限信息背景下的风电场短期功率预测方法

作者信息 +

Short-Term Power Prediction Method for Wind Farms Considering Limited Information Background

Author information +
文章历史 +

摘要

【目的】随着能源消耗的持续增长,以风能为代表的清洁能源装机容量正在稳步提升。然而,新建风电场站数据匮乏导致无法对其进行精确建模,同时还存在伴随场站场景数据发生动态更新,难以捕捉时变特征等问题,给风电功率精准预测带来了极大的挑战。【方法】提出一种针对新建风电场站数据匮乏场景下的风电功率预测方法。首先,采用基于堪培拉距离和动态时间规整算法相结合的相似性度量方法,以高效挖掘多个与目标新建场站相似的源域场站;其次,通过筛选后的源域场站风电数据建立基于多源迁移学习扩张卷积神经网络与双向长短期记忆神经网络(dilated convolutional neural network- bidirectional long short term memory,DCNN-BiLSTM )的预训练模型,以利用多个相似源域场站数据经验知识对目标新建风电场站进行迁移学习,避免目标新建风电场站过于依附单源域数据;在此基础上,为了深度挖掘时变场景数据对预测结果的影响,提出一种结合在线自适应模块的预测方法,建立考虑数据匹配更新自适应与考虑权重更新自适应的两种模型自进化方式,对在线自适应模块中的基本预测模型与在线模型的输出结果进行加权,实现新建风电场站的短期风电功率预测。【结果】以中国西北某风电场站集群数据为实例验证了所提方法能够优越地对源域风电场站数据进行筛选,同时进行更为精准的功率预测。【结论】文章所提方法为解决有限信息背景下电力数据匮乏问题提供了可行的解决方案,并有望进一步扩展该方法的应用范围。

Abstract

[Objective] With the continuous growth in energy consumption, the installed capacity of clean energy, particularly wind energy, is steadily increasing. However, the construction of new wind power stations faces significant challenges in accurate wind power prediction owing to the limited data availability and dynamic nature of scene data, which make it difficult to capture time-varying characteristics. [Methods] To address these issue, this study proposes a wind power prediction method for new wind power stations with limited data availability. First, a similarity measurement method combining the Canberra distance and dynamic time warping algorithm is adopted to efficiently identify multiple source-domain wind power stations similar to the new target station. Second, a pre-training model based on a multi-source transfer learning dilated convolutional neural network and bidirectional long short-term memory (dilated convolutional neural network-bidirectional long short-term memory, DCNN-BiLSTM) is established using the wind power data of the selected source domain stations. This approach transfers the experience knowledge of multiple similar source domain stations to the new target wind power station, thereby avoiding over-reliance on single-source domain data. To explore the impact of time-varying scene data on prediction results, a prediction method combining an online adaptive module is proposed. Two self-evolution methods were established considering data-matching update adaptation and weight-update adaptation. The output results of the basic prediction and online models in the online adaptive module were weighted to achieve short-term wind power prediction for the new wind power stations. [Results] The proposed method was verified using data from a wind power station cluster in Northwest China, demonstrating its superior ability to screen source-domain wind power station data and achieve more accurate power predictions. [Conclusions] The method proposed in this article provides a feasible solution to the challenge of scarce power data in under limited information conditions and is expected to broaden the application scope of such methods.

关键词

风电功率预测 / 相似性度量 / 多源迁移学习 / 自适应 / 新建风电场站 / 小样本

Key words

wind power prediction / similarity measurement / multisource transfer learning / self-adaptation / new wind farm station / small sample

引用本文

导出引用
余光正, 信德政, 吕辉清, . 考虑有限信息背景下的风电场短期功率预测方法[J]. 电力建设. 2025, 46(9): 130-143 https://doi.org/10.12204/j.issn.1000-7229.2025.09.011
YU Guangzheng, XIN Dezheng, LÜ Huiqing, et al. Short-Term Power Prediction Method for Wind Farms Considering Limited Information Background[J]. Electric Power Construction. 2025, 46(9): 130-143 https://doi.org/10.12204/j.issn.1000-7229.2025.09.011
中图分类号: TM715   

参考文献

[1]
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[2]
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[3]
王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-27.
WANG Weisheng, WANG Zheng, DONG Cun, et al. Status and error analysis of short-term forecasting technology of wind power in China[J]. Automation of Electric Power Systems, 2021, 45(1): 17-27.
[4]
马原, 张雪敏, 甄钊, 等. 基于修正晴空模型的超短期光伏功率预测方法[J]. 电力系统自动化, 2021, 45(11): 44-51.
MA Yuan, ZHANG Xuemin, ZHEN Zhao, et al. Ultra-short-term photovoltaic power prediction method based on modified clear-sky model[J]. Automation of Electric Power Systems, 2021, 45(11): 44-51.
[5]
陈平, 杜文娟. 基于新能源下混合风电场不同类型风机动态特性相似环节引起的振荡风险研究[J]. 电测与仪表, 2024, 61(12): 114-124.
CHEN Ping, DU Wenjuan. Study on the oscillation risk caused by similar dynamic characteristics of different types of wind turbines in hybrid wind farms based on new energy[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 114-124.
[6]
张力菠, 吴一锴, 王群伟. 考虑碳中和目标与成本优化的可再生能源大规模发展规划[J]. 广东电力, 2023, 36(7): 31-39.
ZHANG Libo, WU Yikai, WANG Qunwei. Large-scale development of renewable energy in consideration of carbon neutrality and cost optimization[J]. Guangdong Electric Power, 2023, 36(7): 31-39.
[7]
YU G Z, ZHANG Z L, CUI G A, et al. Low-carbon economic dispatching strategy based on feasible region of cooperative interaction between wind-storage system and carbon capture power plant[J]. Renewable Energy, 2024, 228: 120706.
[8]
YU G Z, SHEN L X, DONG Q, et al. Ultra-short-term wind power forecasting techniques: comparative analysis and future trends[J]. Frontiers in Energy Research, 2024, 11: 1345004.
[9]
彭云聪, 秦小林, 张力戈, 等. 面向图像分类的小样本学习算法综述[J]. 计算机科学, 2022, 49(5): 1-9.
摘要
目前,以深度学习为代表的人工智能算法凭借超大规模数据集以及强大的计算资源,在图像分类、生物特征识别、医疗辅助诊断等领域取得了优秀的成果并成功落地。然而,在许多实际的应用场景中,因诸多限制,研究人员无法获取到大量样本或者获取样本的代价过高,因此研究图像分类任务在小样本情形下的学习算法成为了推动智能化进程的核心动力,同时也成为了当下的研究热点。小样本学习指在监督信息数量有限的情况下进行学习并解决问题的算法。首先,从机器学习理论的角度描述了小样本学习困难的原因;其次,根据小样本学习算法的设计动机将现有算法归为表征学习、数据扩充、学习策略三大类,并分析其优缺点;然后,总结了常用的小样本学习评价方法以及现有模型在公用数据集上的表现;最后,讨论了小样本图像分类技术的难点及未来的研究趋势,为今后的研究提供参考。
PENG Yuncong, QIN Xiaolin, ZHANG Lige, et al. Survey on few-shot learning algorithms for image classification[J]. Computer Science, 2022, 49(5): 1-9.
Presently,artificial intelligence algorithms represented by deep learning have achieved advanced results and been successfully used in fields such as image classification,biometric recognition and medical assisted diagnosis by virtue of ultra-large-scale data sets and powerful computing resources.However,due to many restrictions in the actual environment,it is impossible to obtain a large number of samples or the cost of obtaining samples is too high.Therefore,studying the learning algorithm in the case of small samples is the core driving force to promote the intelligent process,and it has also become a current research hot-spot.Few-shot learning is the algorithm to learn and solve the problem under the condition of limited supervision information.Firstly,it describes the reasons why few-shot learning is difficult to generalize from the perspective of machine learning theory.Secondly,according to the design motivation of the few-shot learning algorithm,existing algorithms are classified into three categories:representation learning,data expansion and learning strategy,and their advantages and disadvantages are analyzed.Thirdly,we summarize the commonly used few-shot learning evaluation methods and the performance of existing models in public data sets.Finally,we discuss the difficulties and future research trends of small sample image classification technology to provide re-ferences for future research.
[10]
余光正, 陆柳, 汤波, 等. 基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报, 2021, 41(20): 6989-7003.
YU Guangzheng, LU Liu, TANG Bo, et al. An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20): 6989-7003.
[11]
周军, 王渴心, 王岩. 融合迁移学习与CGAN的风电集群功率超短期预测[J]. 电力系统及其自动化学报, 2024, 36(5): 9-18.
ZHOU Jun, WANG Kexin, WANG Yan. Fusion of transfer learning and CGAN for ultra short-term power prediction of wind power clusters[J]. Proceedings of the CSU-EPSA, 2024, 36(5): 9-18.
[12]
YU L A, ZHANG X M, YIN H. An extreme learning machine based virtual sample generation method with feature engineering for credit risk assessment with data scarcity[J]. Expert Systems with Applications, 2022, 202: 117363.
[13]
OHNO H. Auto-encoder-based generative models for data augmentation on regression problems[J]. Soft Computing, 2020, 24(11): 7999-8009.
[14]
叶林, 李奕霖, 裴铭, 等. 寒潮天气小样本条件下的短期风电功率组合预测[J]. 中国电机工程学报, 2023, 43(2): 543-554.
YE Lin, LI Yilin, PEI Ming, et al. Combined approach for short-term wind power forecasting under cold weather with small sample[J]. Proceedings of the CSEE, 2023, 43(2): 543-554.
[15]
YOON J, JARRETT D, VAN DER SCHAAR M. Time-series generative adversarial networks[C/OL]// 33rd Conference on Advances in Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019.[2024-10-10]. https://papers.nips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.
[16]
魏泽涛, 刘友波, 沈晓东, 等. 基于样本数据迁移学习的贫资料地区小水电超短期出力建模及发电预测[J]. 中国电机工程学报, 2023, 43(7): 2652-2666.
WEI Zetao, LIU Youbo, SHEN Xiaodong, et al. Ultra-short-term power generation modeling and prediction for small hydropower in data-scarce areas based on sample data transfer learning[J]. Proceedings of the CSEE, 2023, 43(7): 2652-2666.
[17]
YIN H, OU Z H, FU J J, et al. A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture[J]. Energy, 2021, 234: 121271.
[18]
LU H M, WU J Z, RUAN Y J, et al. A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction[J]. International Journal of Electrical Power & Energy Systems, 2023, 149: 109024.
[19]
余光正, 陆柳, 汤波, 等. 考虑转折性天气的海上风电功率超短期分段预测方法研究[J]. 中国电机工程学报, 2022, 42(13): 4859-4871.
YU Guangzheng, LU Liu, TANG Bo, et al. Research on ultra-short-term subsection forecasting method of offshore wind power considering transitional weather[J]. Proceedings of the CSEE, 2022, 42(13): 4859-4871.
[20]
YU G Z, LU L, TANG B, et al. Ultra-short-term wind power subsection forecasting method based on extreme weather[J]. IEEE Transactions on Power Systems, 2023, 38(6): 5045-5056.
[21]
段玉, 朱子民, 王小云, 等. 基于改进粒子群算法的自适应构网型变流器控制策略[J]. 广东电力, 2024, 37(2): 10-17.
DUAN Yu, ZHU Zimin, WANG Xiaoyun, et al. Adaptive grid-type converter control strategy based on improved particle swarm algorithm[J]. Guangdong Electric Power, 2024, 37(2): 10-17.
[22]
JORGE J, PAREDES R. Passive-Aggressive online learning with nonlinear embeddings[J]. Pattern Recognition, 2018, 79: 162-171.
[23]
LI Z T, WEI W, ZHANG T Z, et al. Online multi-expert learning for visual tracking[J]. IEEE Transactions on Image Processing, 2019.
[24]
LIU L, WANG J J, LI J P, et al. An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update[J]. Applied Energy, 2023, 340: 121049.
[25]
GAO J X, CHEN Y T, HU W B, et al. An adaptive deep-learning load forecasting framework by integrating transformer and domain knowledge[J]. Advances in Applied Energy, 2023, 10: 100142.
[26]
LIANG T, ZHAO Q, LV Q Z, et al. A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers[J]. Energy, 2021, 230: 120904.
[27]
陈金富, 朱乔木, 石东源, 等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报, 2019, 39(7): 2093-2106.
CHEN Jinfu, ZHU Qiaomu, SHI Dongyuan, et al. A multi-step wind speed prediction model for multiple sites leveraging spatio-temporal correlation[J]. Proceedings of the CSEE, 2019, 39(7): 2093-2106.
[28]
李高扬, 王宁, 高若田, 等. 面向新型电力系统智能化提效的多源异构数据融合技术研究[J]. 电测与仪表, 2024, 61(11): 116-121.
LI Gaoyang, WANG Ning, GAO Ruotian, et al. Research on multi-source heterogeneous data integration technology for smart efficiency improvement in novel power system[J]. Electrical Measurement & Instrumentation, 2024, 61(11): 116-121.
[29]
李鹏, 崔荣喜, 卢京祥, 等. 基于数据驱动的源网荷储协同自治方法与理论研究[J]. 供用电, 2024, 41(3): 9-16.
LI Peng, CUI Rongxi, LU Jingxiang, et al. Research on method and theory of source-grid-load-storage collaborative autonomy based on data-driven[J]. Distribution & Utilization, 2024, 41(3): 9-16.
[30]
付雪姣, 吕可欣, 吴林林, 等. 考虑不同天气类型样本的光伏功率日内预测模型[J]. 分布式能源, 2024, 9(2): 39-47.
FU Xuejiao, LYU Kexin, WU Linlin, et al. Intraday prediction model for PV power considering samples of different weather types[J]. Distributed Energy, 2024, 9(2): 39-47.
[31]
YU G Z, LIU C Q, TANG B, et al. Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution[J]. Renewable Energy, 2022, 199: 599-612.
[32]
SANDHU G, SINGH A, LAMBA P S, et al. Modified euclidean-canberra blend distance metric for kNN classifier[J]. Intelligent Decision Technologies, 17(2): 527-541.
[33]
HAN T, PENG Q K, ZHU Z B, et al. A pattern representation of stock time series based on DTW[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 550: 124161.
[34]
黄悦华, 张子豪, 陈庆, 等. 基于多头注意力机制的CNN-BiLSTM高海拔多因素输电线路可听噪声预测[J]. 高压电器, 2024, 60(12): 160-169.
HUANG Yuehua, ZHANG Zihao, CHEN Qing, et al. Prediction of audible noise of CNN-BiLSTM high altitude multi-factor transmission line based on multi-head attention mechanism[J]. High Voltage Apparatus, 2024, 60(12): 160-169.
[35]
陈晓华, 吴杰康, 蔡锦健, 等. 基于猎人猎物优化算法优化BiLSTM的电力负荷短期预测[J]. 山东电力技术, 2024, 51(4): 64-71.
CHEN Xiaohua, WU Jiekang, CAI Jinjian, et al. Short-term load prediction based on BiLSTM optimized by hunter-prey optimization algorithm[J]. Shandong Electric Power, 2024, 51(4): 64-71.
[36]
李建林, 胡笳扬, 辛迪熙, 等. 基于参数自调节的电氢耦合系统调频控制策略研究[J]. 高压电器, 2024, 60(7): 1-11.
LI Jianlin, HU Jiayang, XIN Dixi, et al. Research on frequency modulation control strategy of electric-hydrogen coupling system based on parameter self-regulation[J]. High Voltage Apparatus, 2024, 60(7): 1-11.
[37]
调度侧风电或光伏功率预测系统技术要求: GB/T 40607—2021[S]. 北京: 中国标准出版社, 2021.
Technical requirements for dispatching side forecasting system of wind or photovoltaic power: GB/T 40607—2021[S]. Beijing: Standards Press of China, 2021.

基金

国家自然科学基金项目(52207121)

编辑: 魏希辉
PDF(2353 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/