大容量电压源型逆变器在新型电力系统构建中的关键技术和创新展望

马为民, 李明, 薛英林, 王莹鑫, 吴方劼, 赵峥, 李探

电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 1-11.

PDF(2256 KB)
PDF(2256 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 1-11. DOI: 10.12204/j.issn.1000-7229.2025.10.001
电力电子装备在新型电力系统中的应用·栏目主持 徐政、余占清、赵成勇、查晓明、向往、马为民、吴方劼·

大容量电压源型逆变器在新型电力系统构建中的关键技术和创新展望

作者信息 +

Key Technologies and Innovation Prospects of Large-Capacity Voltage-Sourced Inverter in the Construction of New Power Systems

Author information +
文章历史 +

摘要

【目的】基于模块化多电平技术的大容量电压源型逆变器(static var generator,SVG),可实现主动构网、无功补偿、谐波抑制、阻抗重塑等多种功能,是支撑新型电力系统构建的重要设备。【方法】对大容量电压源型逆变器在新型电力系统构建中的关键技术进行了论述。首先,回顾了SVG的发展历程和基本拓扑原理,梳理了SVG与模块化多电平换流器(modular multilevel converter,MMC)演化转换关系,分析了SVG支撑电网强度的量化评估公式,总结了SVG保障新型电力系统在高比例新能源、高比例电力电子设备接入下安全稳定运行的优势。然后,重点对基于SVG的多源换相换流器(multisource line commutation converter,SLCC)技术、有源滤波器、构网型SVG、储能型SVG等关键技术进行了分析。最后,对SVG在未来新型电力系统中可发挥的关键作用和后续重点研究方向进行了展望。【结果】在未来新型电力系统构建中,大容量SVG在大规模新能源孤岛送出、弱系统电压支撑、广域谐波抑制等方面应用前景广阔。【结论】孤岛新能源下SVG预充电和黑启动、多SVG间协调配合控制等方面有待开展进一步深入研究。

Abstract

[Objective] The large-capacity static var generator (SVG) based on modular multilevel technology can be used to realize various functions such as active network construction,reactive power compensation, harmonic suppression,and impedance remodeling,and is an important equipment to support the construction of new power systems. [Methods] This study discusses the key technologies and innovation prospects of large-capacity voltage-sourced inverters in the construction of new power systems, reviews the development history and basic topological principles of SVG,determines the evolutionary conversion relationship between SVG and modular multilevel converters, analyzes the quantitative evaluation formula of AC grid strength supported by SVG,and summarizes the advantages of SVG in ensuring the safe and stable operation of the new power system with a high proportion of new energy and power electronic equipment. Then, key technologies such as SVG-based multisource line commutation converter (SLCC) technology, active filter,grid-forming SVG,and energy storage-type SVG were analyzed. Finally,the key role that SVG plays in the construction of new power systems and the key research directions were discussed. [Results] In the construction of new power systems, large-capacity SVGs have broad application prospects in areas such as large-scale new energy island exports,weak-system voltage support, and wide-area harmonic suppression. [Conclusions] Further in-depth research is needed on SVG precharging and black start,as well as on coordinated control among multiple SVGs in isolated new energy systems.

关键词

新型电力系统 / 电网强度 / 电压源型逆变器(SVG) / 有源滤波 / 多源换相换流器(SLCC)

Key words

new power system / grid strength / static var generator (VSG) / active filtering / multisource line commutation converter (SLCC)

引用本文

导出引用
马为民, 李明, 薛英林, . 大容量电压源型逆变器在新型电力系统构建中的关键技术和创新展望[J]. 电力建设. 2025, 46(10): 1-11 https://doi.org/10.12204/j.issn.1000-7229.2025.10.001
MA Weimin, LI Ming, XUE Yinglin, et al. Key Technologies and Innovation Prospects of Large-Capacity Voltage-Sourced Inverter in the Construction of New Power Systems[J]. Electric Power Construction. 2025, 46(10): 1-11 https://doi.org/10.12204/j.issn.1000-7229.2025.10.001
中图分类号: TM46   

参考文献

[1]
马晓伟, 王文倬, 薛晨, 等. 西北新型电力系统先行示范体系探究[J]. 电网与清洁能源, 2024, 40(1): 1-7.
MA Xiaowei, WANG Wenzhuo, XUE Chen, et al. Research on the leading demonstration system of new-type power system in northwest China[J]. Power System and Clean Energy, 2024, 40(1): 1-7.
[2]
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
摘要
构建以新能源为主体的新型电力系统,既是我国电力系统转型升级的重要方向,也是实现碳达峰、碳中和目标的关键途径。本文分析了电力系统转型带来的变化、问题及挑战,阐述了新型电力系统的内涵、构建原则与思路;根据电力系统发展的技术特征、新能源接入规模,合理划分新型电力系统的发展阶段并针对性提出各阶段的发展建议。研究认为,新型电力系统以新能源为电能供给主体,可满足不断增长的清洁用电需求,兼具高度的安全性、开放性、适应性;相关系统构建是一项系统性工程,应遵循电力系统的技术演进规律与特征,充分利用成熟技术、存量系统并深入挖掘潜力,同步着力研发新兴技术,积极稳妥并循序渐进实施重大转型。
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.

Building a new electric power system that is based on new energy sources is an important direction for power system transformation and upgrading in China, and it is critical for peaking carbon emissions and achieving carbon neutrality. In this study, we analyze the changes and challenges that are brought by power system transformation and elaborate on the connotation and building principles of a new electric power system. Moreover, we categorize the development of the new system into stages and propose development suggestions for each stage considering the technical features of the system and the new energy access scale. The new electric power system proposed in this study can satisfy the increasing demand for clean power as it primarily uses new energy sources and it has the features of high safety, openness, and adaptability. Building the new electric power system should follow the technical evolution law and characteristics of power systems; it should further exploit the potentials of mature technologies and current power systems. Meanwhile, emerging technologies should be researched and developed.

[3]
尚勇, 王喆, 严欢, 等. “双碳” 背景下陕西新型电力系统研究探索[J]. 电网与清洁能源, 2023, 39(12): 20-27.
SHANG Yong, WANG Zhe, YAN Huan, et al. Research exploration of Shaanxi new type power system in the background of “dual carbon”[J]. Power System and Clean Energy, 2023, 39(12): 20-27.
[4]
周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[5]
《新型电力系统发展蓝皮书》编写组. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023.
[6]
韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046.
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046.
[7]
马宁宁, 谢小荣, 亢朋朋, 等. 高比例风电并网系统次同步振荡的广域监测与分析[J]. 中国电机工程学报, 2021, 41(1): 65-74, 398.
MA Ningning, XIE Xiaorong, KANG Pengpeng, et al. Wide-area monitoring and analysis of subsynchronous oscillation in power systems with high-penetration of wind power[J]. Proceedings of the CSEE, 2021, 41(1): 65-74, 398.
[8]
郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J]. 中国电机工程学报, 2020, 40(1): 19-29, 370.
GUO Xianshan, LIU Zehong, LI Yunfeng, et al. Characteristic analysis of high-frequency resonance of flexible high voltage direct current and research on its damping control strategy[J]. Proceedings of the CSEE, 2020, 40(1): 19-29, 370.
[9]
杜文娟, 郝向坤, 陈珏. 光伏场经柔直并网振荡稳定性分析与抑制方法研究[J]. 电力工程技术, 2024, 43(3): 2-11, 51.
DU Wenjuan, HAO Xiangkun, CHEN Jue. Oscillation stability analysis and mitigation method of photovoltaic field connected to the grid via VSC-HVDC[J]. Electric Power Engineering Technology, 2024, 43(3): 2-11, 51.
[10]
高本锋, 符章棋, 王刚, 等. 适用于次同步振荡分析的直驱风电场平衡降阶方法[J]. 电力工程技术, 2023, 42(3): 112-120.
GAO Benfeng, FU Zhangqi, WANG Gang, et al. Balanced reduction method of direct-drive wind farm for subsynchronous oscillation analysis[J]. Electric Power Engineering Technology, 2023, 42(3): 112-120.
[11]
李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42(2): 84-93.
LI Shichun, SONG Qiushuang, XUE Zhenyao, et al. Inertia estimation of new energy power system with virtual inertia response of wind power[J]. Electric Power Engineering Technology, 2023, 42(2): 84-93.
[12]
杨建明, 马云龙, 卢宇, 等. 龙政直流工程交流滤波器过负荷保护的标准化改造[J]. 浙江电力, 2023, 42(1): 23-30.
YANG Jianming, MA Yunlong, LU Yu, et al. Standardized retrofit of AC filter overload protection in Longquan-Zhengping HVDC transmission project[J]. Zhejiang Electric Power, 2023, 42(1): 23-30.
[13]
肖洋, 李志强, 程林, 等. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279.
摘要
为实现西北电网高比例新能源地区的无功优化控制,提出了一种高压直流换流站集中式调相机参与电网自动电压控制(automatic voltage control,AVC)的综合协调控制策略。首先分析了AVC的总体控制思路,按“软分区”思想构造了三级电压控制模式。针对西北电网和青海电网实际,在网省系统之间建立协调控制变量,结合最优潮流模型,形成了柴达木调相机参与AVC的综合协调控制策略。通过柴达木调相机AVC联调试验时偶遇的电网大扰动实例,验证了控制策略的良好适用性。所提出的AVC控制策略,可使调相机在电网稳态时发挥无功源作用,电网故障时提供瞬时强无功支撑,充分利用新一代调相机性能,提高电网无功电压调节水平。
XIAO Yang, LI Zhiqiang, CHENG Lin, et al. AVC comprehensive coordinated control strategy of centralized condenser in northwest power grid[J]. Power Generation Technology, 2023, 44(2): 270-279.

This paper presented a comprehensive coordinated control strategy of centralized condenser in high-voltage DC converter station which participated in automatic voltage control (AVC) to perform the reactive power optimization in high proportion new energy areas of Northwest Power Grid. Firstly, the general control idea of AVC was analyzed, and the three-level voltage control mode based on “soft partition” was given. According to the actual situation of Northwest power grid and Qinghai power grid, the coordinated control variables between them were established. Combined with the optimal power flow model, the comprehensive coordinated control strategy of Qaidam condenser participating in AVC was formed. The good applicability of the control strategy was demonstrated by the example of power grid large disturbance encountered during the AVC joint commissioning test of Qaidam condenser. The presented strategy enhances the condenser’s reactive power source effect in the case of steady-state operation. Meanwhile, it ensures instantaneous strong reactive power support capability in the case of power grid fault. As a result, the strategy gives full play to the performance of the condenser, and improves the level of reactive power and voltage regulation of power grid.

[14]
张起瑞, 辛超山, 李凤婷, 等. 多直流协调的新能源送端地区暂态过电压抑制策略[J]. 电力工程技术, 2023, 42(1): 98-106.
ZHANG Qirui, XIN Chaoshan, LI Fengting, et al. Multi DC coordinated transient overvoltage suppression strategy for high proportion new energy sending terminal area[J]. Electric Power Engineering Technology, 2023, 42(1): 98-106.
[15]
马为民, 蒲莹, 宫勋. 适应高比例新能源电源外送的特高压直流控制器[J]. 电网技术, 2023, 47(3): 1262-1268.
MA Weimin, PU Ying, GONG Xun. UHVDC current controller for high proportional new energy transmission[J]. Power System Technology, 2023, 47(3): 1262-1268.
[16]
辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45(22): 1-8.
XIN Baoan, GUO Mingqun, WANG Shaowu, et al. Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22): 1-8.
[17]
辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
XIN Baoan, SHAN Baoguo, LI Qionghui, et al. Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[18]
刘泽洪, 马为民, 王绍武, 等. 混合级联特高压直流输电系统方案设计及动模试验验证[J]. 电网技术, 2021, 45(3): 1214-1222.
LIU Zehong, MA Weimin, WANG Shaowu, et al. Schematic design of hybrid cascaded ultra HVDC and its modification in dynamic model experiment[J]. Power System Technology, 2021, 45(3): 1214-1222.
[19]
马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120.
MA Jin, ZHAO Dawei, QIAN Minhui, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power System Technology, 2017, 41(10): 3112-3120.
[20]
何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一): 送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391-4405.
HE Guoqing, WANG Weisheng, LIU Chun, et al. Commutation failure of UHVDC system for wind farm integration (part Ⅰ): transient reactive power and voltage modeling of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391-4405.
[21]
金一丁, 于钊, 李明节, 等. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102.
JIN Yiding, YU Zhao, LI Mingjie, et al. Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology, 2018, 42(7): 2095-2102.
[22]
陈中. 级联H桥储能变换器及其控制技术研究[D]. 合肥: 合肥工业大学, 2015.
CHEN Zhong. Research on cascaded H-bridge converter for energy storage and its control techniques[D]. Hefei: Hefei University of Technology, 2015.
[23]
张建文, 孙人成, 周剑桥, 等. 多中压交流端口链式电池储能功率变换系统[J]. 中国电机工程学报, 2022, 42(24): 8972-8984.
ZHANG Jianwen, SUN Rencheng, ZHOU Jianqiao, et al. A novel energy storage power conversion system based on multiple medium voltage AC-ports cascaded H-bridge converter[J]. Proceedings of the CSEE, 2022, 42(24): 8972-8984.
[24]
杨滢, 杨晓雷, 项中明, 等. 参与一次调频储能型风电场的交流外送振荡特性分析[J]. 智慧电力, 2023, 51(9): 105-112.
YANG Ying, YANG Xiaolei, XIANG Zhongming, et al. Oscillation characteristic analysis of wind farm with energy storage participating primary frequency control[J]. Smart Power, 2023, 51(9): 105-112.
[25]
陈明泉. 闽粤联网工程有源滤波器设计方案及其二次控保系统研究[J]. 电气技术, 2022, 23(8): 95-102.
CHEN Mingquan. Research on active power filter design scheme and secondary control-protection system of the Fujian-Guangdong interconnection project[J]. Electrical Engineering, 2022, 23(8): 95-102.
[26]
马为民, 王玲, 李明, 等. 新型电力系统中的特高压直流输电SLCC换流技术[J]. 高电压技术, 2022, 48(12): 4941-4948.
MA Weimin, WANG Ling, LI Ming, et al. SLCC converter technology of UHVDC transmission in new power system[J]. High Voltage Engineering, 2022, 48(12): 4941-4948.
[27]
李志强, 何凤军, 郭强, 等. 青南新能源集中送出地区动态无功补偿方案对比研究[J]. 现代电力, 2021, 38(1): 87-93.
LI Zhiqiang, HE Fengjun, GUO Qiang, et al. Comparative study on dynamic reactive power compensation scheme in the concentrated delivery area of new energy in southern Qinghai[J]. Modern Electric Power, 2021, 38(1): 87-93.
[28]
马为民, 李明, 吴方劼, 等. 基于SVG的海上风电不控整流直流输电系统及控制方法: CN116154832A[P]. 2023-05-23.
MA Weimin, LI Ming, WU Fangjie, et al. SVG-based offshore wind power uncontrolled rectification DC power transmission system and control method: CN116154832A[P]. 2023-05-23.
[29]
张家玮, 张琛, 史先强, 等. 储能型静止无功发生装置及其自同步电压源控制[J]. 高电压技术, 2023, 49(1): 61-71.
ZHANG Jiawei, ZHANG Chen, SHI Xianqiang, et al. Energy-storage-type static var generator and its autonomous-synchronization voltage source control[J]. High Voltage Engineering, 2023, 49(1): 61-71.
[30]
徐惠勇. 无功功率补偿中SVG技术的研究现状与发展[J]. 应用能源技术, 2012(2): 31-33.
XU Huiyong. Reactive power compensation in SVG technology research present situation and the development[J]. Applied Energy Technology, 2012(2): 31-33.
[31]
陈志斌. 静止无功发生器SVG综述[J]. 科技信息, 2012(7): 108, 93.
CHEN Zhibin. Overview of static var generator SVG[J]. Science & Technology Information, 2012(7): 108, 93.
[32]
王兆安, 杨君, 刘进军, 等. 谐波抑制和无功功率补偿[M]. 2版. 北京: 机械工业出版社, 2006.
[33]
SUMI Y, HARUMOTO Y, HASEGAWA T, et al. New static var control using force-commutated inverters[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(9): 4216-4224.
[34]
SOBTINK K H, RENZ K W, TYLL H. Operational experience and field tests of the SVG at rejsby hede[C]// POWERCON '98.1998 International Conference on Power System Technology. Proceedings. IEEE, 1998: 318-322.
[35]
TWINING E, NEWMAN M J, LOH P C, et al. Voltage compensation in weak distribution networks using a D-STATCOM[C]// The Fifth International Conference on Power Electronics and Drive Systems, 2003. IEEE, 2004: 178-183.
[36]
刘文华, 梁旭, 姜齐荣, 等. 采用GTO逆变器的±20 Mvar STATCOM[J]. 电力系统自动化, 2000, 24(23): 19-23, 70.
LIU Wenhua, LIANG Xu, JIANG Qirong, et al. Development of ±20 Mvar statcom employing GTO inverters[J]. Automation of Electric Power Systems, 2000, 24(23): 19-23, 70.
[37]
诸纪新. ±50 Mvar STATCOM装置在上海电网中的应用[J]. 电力建设, 2006, 27(12): 14-17.
摘要
上海电网是典型的大受端电网,受电比率已达用电负荷的35%。上海220 kV电网分7片运行,各分区内电压支撑能力和联络能力不强,动态无功储备缺乏,极易引发电压稳定问题。其中黄渡分区最有必要配置动态无功设备,在西郊变电站安装了±50Mvar STATCOM动态无功补偿装置。±50Mvar及以上STATCOM装置目前世界上仅有7台,该台是我国完全拥有自主知识产权的设备,技术达到世界先进水平。从安装运行后的情况看,黄渡分区线损率至少可降低5%左右。
ZHU Jixin. Application of ±50 Mvar STATCOM in Shanghai power grid[J]. Electric Power Construction, 2006, 27(12): 14-17.
[38]
李斌, 张新雨, 何佳伟, 等. 计及保护动作时间协调配合的双馈风电场故障穿越策略[J]. 电力系统自动化, 2023, 47(24): 1-10.
LI Bin, ZHANG Xinyu, HE Jiawei, et al. Fault ride-through strategy for doubly-fed wind farms considering coordination of protection operation time[J]. Automation of Electric Power Systems, 2023, 47(24): 1-10.
[39]
詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359.
ZHAN Changjiang, WU Heng, WANG Xiongfei, et al. An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[40]
王新宝, 葛景, 韩连山, 等. 构网型储能支撑新型电力系统建设的思考与实践[J]. 电力系统保护与控制, 2023, 51(5): 172-179.
WANG Xinbao, GE Jing, HAN Lianshan, et al. Theory and practice of grid-forming BESS supporting the construction of a new type of power system[J]. Power System Protection and Control, 2023, 51(5): 172-179.
[41]
刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-16.
LIU Zhaoxun, QIN Liang, YANG Shiqi, et al. Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power System Technology, 2023, 47(1): 1-16.
[42]
张定华, 桂卫华, 王卫安, 等. 牵引变电所电能质量混合动态治理技术[J]. 中国电机工程学报, 2011, 31(7): 48-55.
ZHANG Dinghua, GUI Weihua, WANG Weian, et al. Hybrid dynamic power quality compensation technology for traction substation[J]. Proceedings of the CSEE, 2011, 31(7): 48-55.
[43]
刘健犇, 陈乔夫, 代少君, 等. 高压大容量串联混合型有源电力滤波器的关键技术[J]. 中国电机工程学报, 2013, 33(12): 1-9, 179.
LIU Jianben, CHEN Qiaofu, DAI Shaojun, et al. Key techniques of high-voltage and large-capacity series hybrid active power filters[J]. Proceedings of the CSEE, 2013, 33(12): 1-9, 179.
[44]
李双健, 杜夏冰, 贾秀芳, 等. 一种应用于LCC高压直流输电的级联H桥混合型有源滤波器[J]. 电网技术, 2021, 45(4): 1409-1416.
LI Shuangjian, DU Xiabing, JIA Xiufang, et al. A cascaded H-bridge hybrid active power filter applied to LCC-HVDC[J]. Power System Technology, 2021, 45(4): 1409-1416.

基金

国家电网公司科技项目(5100-202356816A-3-8-KJ)

编辑: 景贺峰
PDF(2256 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/