直流输电的基本特性及其应用模式概述

徐政

电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 34-43.

PDF(1197 KB)
PDF(1197 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 34-43. DOI: 10.12204/j.issn.1000-7229.2025.10.004
规划建设

直流输电的基本特性及其应用模式概述

作者信息 +

Overview of Basic Characteristics and Application Modes of DC Power Transmission

Author information +
文章历史 +

摘要

【目的】直流输电技术在新型电力系统建设中具有举足轻重的作用,为了拓展直流输电新的或未知的应用模式,需要对直流输电的底层物理特性作比以往更深入的归纳和总结。【方法】根据基本的物理原理,将直流输电系统的固有物理特性归纳为5个方面,分别为频率隔断效应、故障电流隔断效应、输电距离不受限制特性、输送功率大幅提升特性和无分布电容电流特性。在此基础上,将既有的直流输电应用模式建立在直流输电系统的固有物理特性之上。【结果】建立了直流输电的固有物理特性与现有各种应用模式之间的对应关系,为新型电力系统背景下拓展直流输电技术应用模式提供一种思考的途径。【结论】直流输电技术的固有物理特性与交流输电技术的固有物理特性具有相互补充的关系,在交流电网中合理应用直流输电技术可以大大提升电力系统的运行性能,未来新型电力系统将是一个在各电压层级交直流有机融合的电力系统。

Abstract

[Objective] DC power transmission technology is crucial in constructing new energy power systems. Exploration of novel applications of DC power transmission necessitate a deeper understanding and more comprehensive analyses of its underlying physical characteristics. [Methods] Based on fundamental physical principles, the inherent characteristics of DC power transmission systems can be summarized into the following five aspects: frequency isolation effect, fault current isolation effect, unlimited transmission distance, significantly enhanced power transmission capability, and absence of distributed capacitive current. Building on these inherent physical characteristics, the application modes of existing DC power transmission are established. [Results] A correlation between the inherent physical characteristics of DC transmission and various existing application modes is established. This provides a pathway for expanding DC technology applications in the context of novel energy power systems. [Conclusions] The inherent physical characteristics of the DC and AC transmission technologies exhibit complementary relationships. The strategic application of DC transmission technology within AC power grids can significantly enhance the operational performance of power systems. Future power systems will entail an organic integration of AC and DC across all voltage levels.

关键词

直流输电 / 频率隔断 / 故障电流隔断 / 直流电网 / 异同步联网 / 类同步控制

Key words

DC power transmission / frequency isolation / fault current isolation / DC grid / semi-asynchronous and semi-synchronous interconnection / quasi-synchronous control

引用本文

导出引用
徐政. 直流输电的基本特性及其应用模式概述[J]. 电力建设. 2025, 46(10): 34-43 https://doi.org/10.12204/j.issn.1000-7229.2025.10.004
XU Zheng. Overview of Basic Characteristics and Application Modes of DC Power Transmission[J]. Electric Power Construction. 2025, 46(10): 34-43 https://doi.org/10.12204/j.issn.1000-7229.2025.10.004
中图分类号: TM72   

参考文献

[1]
徐政, 张哲任, 肖晃庆. 基于子模块级联型换流器的柔性输电系统[M]. 北京: 机械工业出版社,2025: 1-2.
XU Zheng, ZHANG Zheren, XIAO Huangqing. Flexible power transmission systems based on cascaded submodule converters[M]. Beijing: China Machine Press, 2025: 1-2.
[2]
ADAMSON C, HINGORANI N G. High voltage direct current power transmission[M]. London: Garraway Limited, 1960.
[3]
KIMBARK E W. Direct current transmission[M]. New York: Wiley-Interscience, 1971.
[4]
UHLMANN E. Power transmission by direct current[M]. Berlin:Springer, 1975.
[5]
浙江大学直流输电科研组. 直流输电[M]. 北京: 电力工业出版社, 1982.
HVDC Research Group of Zhejiang University. HVDC transmission[M]. Beijing: Electric Power Press, 1982.
[6]
ARRILAGA J. High voltage direct current transmission[M]. England: IET Press, 1998.
[7]
徐政. 超、特高压交流输电系统的输送能力分析[J]. 电网技术, 1995, 19(8): 7-12.
XU Zheng. EHV/UHV AC transmission capability analysis[J]. Power System Technology, 1995, 19(8): 7-12.
[8]
徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004: 2-7.
[9]
刘振亚, 舒印彪, 张文亮, 等. 直流输电系统电压等级序列研究[J]. 中国电机工程学报, 2008, 28(10): 1-8.
LIU Zhenya, SHU Yinbiao, ZHANG Wenliang, et al. Study on voltage class series for HVDC transmission system[J]. Proceedings of the CSEE, 2008, 28(10): 1-8.
[10]
徐政, 程斌杰. 不同电压等级直流输电的适用性研究[J]. 电力建设, 2015, 36(9): 22-29.
摘要
各电压等级直流输电系统的经济输电适用范围,包括输送距离和输送容量,对于实际直流输电工程中电压等级的选择具有指导作用。从投资成本、维护成本、损耗费用和输电走廊土地贬值费用这4个方面建立了直流输电系统的经济性模型,并运用现金流折现模型计算直流输电工程的综合费用。以输电距离1 000 km、输电功率5 000 MW具体输电场景为例,计算了各电压等级直流工程的综合费用,并拓展到任意输电场景,得到了各电压等级直流输电系统经济输电适用范围。最后对影响经济输电适用范围的部分参数进行了灵敏度分析。研究表明:随着输电功率和输电距离的增加,总体上高电压等级的直流输电方式更为经济;电能成本和年等效损耗时间对直流系统经济输电适用范围影响较大。
XU Zheng, CHENG Binjie. Applicability study on DC transmission with different voltage levels[J]. Electric Power Construction, 2015, 36(9): 22-29.

The economic transmission distance and capacity of DC transmission systems with different voltage levels serve as a guide in the selection of voltage level in actual DC transmission projects. The economic model of DC transmission system was built from four aspects of investment cost, maintenance cost, loss cost and transmission corridor depreciation cost. And the discounted cash flow model was adopted to calculate the comprehensive cost of DC transmission system. Taking a concrete transmission scenario with 1000 km transmission distance and 5 000 transmission power as an example, the comprehensive cost of DC project with different voltage levels was calculated, whose results were extended to other transmission scenarios to obtain the economic transmission applicable scope of DC transmission system with different voltage levels. Finally, the sensitivity analysis was carried out on parts of parameters that affected the economic transmission applicable scope. The results indicate that the DC transmission mode with high voltage is generally more economical along with the increase of transmission power and transmission capacity, and the electricity cost and equivalent annual loss time have significant influences on the economic transmission applicable scope of DC system.

[11]
安婷, 乐波, 杨鹏, 等. 直流电网直流电压等级确定方法[J]. 中国电机工程学报, 2016, 36(11): 2871-2879.
AN Ting, YUE Bo, YANG Peng, et al. A determination method of DC voltage levels for DC grids[J]. Proceedings of the CSEE, 2016, 36(11): 2871-2879.
[12]
蔡蓉, 张立波, 程濛, 等. 66kV海上风电交流集电方案技术经济性研究[J]. 全球能源互联网, 2019, 2(2): 155-162.
CAI Rong, ZHANG Libo, CHENG Meng, et al. Technical and economic research on 66 kV offshore wind power AC collection solution[J]. Journal of Global Energy Interconnection, 2019, 2(2): 155-162.
[13]
徐政, 张哲任. 低频输电技术原理之一: M3C的数学模型与等效电路[J]. 浙江电力, 2021, 40(10): 13-21.
XU Zheng, ZHANG Zheren. Principles of low frequency power transmission technology: part 1:mathematical model and equivalent circuit of M3C[J]. Zhejiang Electric Power, 2021, 40(10): 13-21.
[14]
徐政, 张哲任. 低频输电技术原理之二: M3C的稳态特性与主回路参数设计[J]. 浙江电力, 2021, 40(10): 22-29.
XU Zheng, ZHANG Zheren. Principles of low frequency power transmission technology: part 2:the steady-state characteristics of M3C and the design of main circuit parameters[J]. Zhejiang Electric Power, 2021, 40(10): 22-29.
[15]
徐政, 张哲任. 低频输电技术原理之三: M3C基本控制策略与子模块电压平衡控制[J]. 浙江电力, 2021, 40(10): 30-41.
XU Zheng, ZHANG Zheren. Principles of low frequency power transmission technology: part 3:basic control strategy for the M3C and sub-module voltage balance control[J]. Zhejiang Electric Power, 2021, 40(10): 30-41.
[16]
黄小卫, 李晓骏, 左干清. 国内外海底电缆工程现状及展望[J]. 电线电缆, 2023(1): 1-6.
HUANG Xiaowei, LI Xiaojun, ZUO Ganqing. Application status and prospect of submarine cable projects at home and abroad[J]. Wire & Cable, 2023(1): 1-6.
[17]
CLARK H, WOODFORD D. Segmentation of the power system with DC links[C]// IEEE HVDC-FACTS Subcommittee Meeting. IEEE, 2006.
[18]
MOUSAVI O A, SANJARI M J, CHERKAOUI, et al. Power system segmentation using DC links to decrease the risk of cascading blackouts[C]// IEEE Trondheim PowerTech. New York: IEEE, 2011.
[19]
LOEHR G C. Is it time to cut the ties that bind?[J]. Transmission & Distribution World: the Information Leader Serving the Worldwide Power-Delivery Industry, 2004(3): 56.
[20]
LOEHR G C. Enhancing the grid, smaller can be better[J]. Energybiz Magazine, 2007(1): 35-36.
[21]
CARLSSON L. HVDC: a “firewall” against disturbances in high-voltage grids[J]. ABB Review, 2005(3): 42-46.
[22]
CLARK H, EDRIS A A, EL-GASSEIR M, et al. Softening the blow of disturbances[J]. IEEE Power and Energy Magazine, 2008, 6(1): 30-41.
[23]
CLARK H K, EL-GASSEIR M M, KENNETH EPP H D, et al. The application of segmentation and grid shock absorber concept for reliable power grids[C]// 2008 12th International Middle-East Power System Conference. IEEE, 2008: 34-38.
[24]
徐政, 唐庚, 黄弘扬, 等. 消解多直流馈入问题的两种新技术[J]. 南方电网技术, 2013, 7(1): 6-14.
XU Zheng, TANG Geng, HUANG Hongyang, et al. Two new technologies for eliminating the problems with multiple HVDC infeeds[J]. Southern Power System Technology, 2013, 7(1): 6-14.
[25]
CHENG B J, XU Z, XU W. Optimal DC-segmentation for multi-infeed HVDC systems based on stability performance[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2445-2454.
[26]
BOLA J, RIVAS R, FERNÁNDEZ R, et al. Operational experience of new Spain-France HVDC interconnection[C]// Proceedings of CIGRE. Paris, France: CIGRE, 2016.
[27]
CORONADO L, LONGAS C, RIVAS R, et al. INELFE: main description and operational experience over three years in service[C]// 2019 AEIT HVDC International Conference (AEIT HVDC). IEEE, 2019: 1-6.
[28]
彭发喜, 黄伟煌, 许树楷, 等. 柔性直流输电系统异同步自动控制策略[J]. 南方电网技术, 2023, 17(3): 20-26.
PENG Faxi, HUANG Weihuang, XU Shukai, et al. Asynchronous automatic control strategy for MMC-HVDC system[J]. Southern Power System Technology, 2023, 17(3): 20-26.
[29]
王之伟, 黄俊辉, 程亮, 等. “嵌入式” 直流技术在省级输电网中的规划及应用[J]. 电力工程技术, 2022, 41(6): 65-74.
WANG Zhiwei, HUANG Junhui, CHENG Liang, et al. Planning and application of embedded DC transmission technology in the provincial transmission power grid[J]. Electric Power Engineering Technology, 2022, 41(6): 65-74.
[30]
周叶, 郝思鹏, 戚无限. 基于AHP-EWM组合赋权法的扬镇交改直长江大跨越导线选型研究[J/OL]. 自动化技术与应用, 2024. (2024-12-30)[2025-06-10]. https://link.cnki.net/urlid/23.1474.TP.20241227.1924.190.
ZHOU Ye, HAO Sipeng, QI Wuxian. Research on the selection of traverse lines for Yangzhen crossing and straight Yangtze river crossing based on AHP-EWM combination weighting method[J/OL]. Techniques of Automation and Applications, 2024. (2024-12-30)[2025-06-10]. https://link.cnki.net/urlid/23.1474.TP.20241227.1924.190.
[31]
徐政, 陈海荣. 电压源换流器型直流输电技术综述[J]. 高电压技术, 2007, 33(1): 1-10.
XU Zheng, CHEN Hairong. Review and applications of VSC HVDC[J]. High Voltage Engineering, 2007, 33(1): 1-10.
[32]
OOI B T, WANG X. Boost-type PWM HVDC transmission system[J]. IEEE Transactions on Power Delivery, 1991, 6(4): 1557-1563.
[33]
OOI B T, WANG X. Voltage angle lock loop control of the boost type PWM converter for HVDC application[J]. IEEE Transactions on Power Electronics, 1990, 5(2): 229-235.
[34]
ASPLUND G, ERIKSSON K, SVENSSON K. HVDC light-DC transmission based on voltage sourced converters[J]. ABB Reviews, 1998(1): 4-9.
[35]
GEMMELL B, DORN J, RETZMANN D, et al. Prospects of multilevel VSC technologies for power transmission[C]// 2008 IEEE/PES Transmission and Distribution Conference and Exposition. IEEE, 2008: 1-16.
[36]
WESTERWELLER T, FRIEDRICH K, ARMONIES U, et al. Trans bay cable world's first HVDC system using multilevel voltage sourced converter[C]// Proceedings of CIGRE. Paris, France: CIGRE, 2010: 1-7.
[37]
TU Q R, XU Z. Impact of sampling frequency on harmonic distortion for modular multilevel converter[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 298-306.

基金

国家自然科学基金项目(U24B2089)

编辑: 景贺峰
PDF(1197 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/