含沼气能发电的农村多微网系统容量配置双层优化模型

张金良, 程佳

电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 73-87.

PDF(2765 KB)
PDF(2765 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 73-87. DOI: 10.12204/j.issn.1000-7229.2025.10.007
调度运行

含沼气能发电的农村多微网系统容量配置双层优化模型

作者信息 +

Dual Layer Optimization Model for Capacity Configuration of Rural Multi-Microgrid System with Biogas Energy Generation

Author information +
文章历史 +

摘要

【目的】为解决农村地区新能源系统容量配置问题,响应乡村振兴与低碳要求,提高可再生能源的消纳率,提出一种基于子微网间交互且考虑沼气能发电的微网系统容量配置方法。【方法】首先对农村多微网结构进行了分析,并建立一个包含了微网间能量调度策略的沼气能发电的多微网系统模型;其次建立含沼气能发电的多微网系统容量配置与运行协同优化双层模型,上层目标为多微网的年综合成本最小与可再生能源利用率最大,下层目标为多微网系统的运行成本最低,并利用粒子群算法结合Cplex求解器进行求解;针对微网系统成本,采用Shapley值法对各微网进行公平分摊。【结果】Matlab仿真结果和算例分析表明:所提引入沼气能作为发电单元,能够增加新能源的渗透率;所提农村微网间电能交互,新能源与储能的容量配置总体均有减少,降低了年投资成本,使得多微网从外部购买电能成本降低9%,售电量也呈下降趋势;采用Shapley值法对微网成本进行分摊,各微网实际成本相较于各微网独立运行场景下分别降低6.3%、2%、4.4%。【结论】所提含沼气能发电的农村多微网系统容量配置双层优化模型,使得年综合成本降低,减少了碳排放,增加了新能源的内部消纳,同时减少农村负荷侧对电网的依赖,能够实现经济性与环保性。

Abstract

[Objective] To solve the problem of new energy system capacity allocation in rural areas, respond to the requirements of rural revitalization and low carbon, and improve the rate of renewable energy consumption, a microgrid system capacity allocation method based on the interaction between sub-microgrids and considering biogas energy generation are proposed. [Methods] First, the structure of rural multi-microgrids was analyzed, and a multi-microgrid system model for biogas energy generation containing an inter-microgrid energy scheduling strategy was established. Subsequently, a two-layer model for capacity allocation and operation co-optimization of a multi-microgrid system incorporating biogas generation was established. The upper-level objective is to minimize the annual integrated cost of the multi-microgrid system while maximizing the utilization of renewable energy sources. Contrarily, the lower-level objective is to minimize the operating cost of the system. The model was solved using a particle swarm optimization algorithm combined with the CPLEX solver. To ensure fair cost allocation among microgrids, the Shapley value method was employed. [Results] Matlab simulation results and example analyses show that the proposed introduction of biogas energy as a power generation unit can increase the penetration rate of new energy. The proposed rural inter-microgrid power interaction effectively reduced the overall capacity allocation of the new energy and energy storage, thereby lowering the annual investment cost. It also decreased the cost of purchasing external power by 9%, although the amount of power sales was correspondingly reduced. The microgrid cost was apportioned using the Shapley value method, and the actual cost of each microgrid was reduced by 6.3%, 2%, and 4%, compared to the scenario of independent operation. Using the Shapley value method to apportion the costs of the microgrids, the actual costs of each microgrid were reduced by 6.3%, 2%, and 4.4%, compared with scenarios in which the microgrids were operated independently. [Conclusions] The proposed two-layer optimization model for the capacity allocation of rural multi-microgrid systems containing biogas energy generation resulted in lower annual integrated costs, reduced carbon emissions, increased internal consumption of new energy sources, and reduced dependence on the grid on the rural load side, which can achieve both economic and environmental friendliness.

关键词

农村多微网 / 沼气能 / 双层优化 / 粒子群算法 / 成本分摊

Key words

rural multi microgrid / biogas energy / double-layer optimization / particle swarm algorithm / cost sharing

引用本文

导出引用
张金良, 程佳. 含沼气能发电的农村多微网系统容量配置双层优化模型[J]. 电力建设. 2025, 46(10): 73-87 https://doi.org/10.12204/j.issn.1000-7229.2025.10.007
ZHANG Jinliang, CHENG Jia. Dual Layer Optimization Model for Capacity Configuration of Rural Multi-Microgrid System with Biogas Energy Generation[J]. Electric Power Construction. 2025, 46(10): 73-87 https://doi.org/10.12204/j.issn.1000-7229.2025.10.007
中图分类号: TM73   

参考文献

[1]
郑云平, 焦春雷, 亚夏尔·吐尔洪, 等. 基于新能源发电的构网型协调储能控制策略研究[J]. 高压电器, 2023, 59(7): 65-74.
ZHENG Yunping, JIAO Chunlei, YASHAR Turhong, et al. Research on grid-forming coordinated energy storage control strategy based on converter-interfaced generation[J]. High Voltage Apparatus, 2023, 59(7): 65-74.
[2]
张礼浩, 刘翔宇, 顾雪平, 等. 新型电力系统频率安全稳定研究综述及展望[J]. 浙江电力, 2024, 43(10): 12-26.
ZHANG Lihao, LIU Xiangyu, GU Xueping, et al. Review and prospects of frequency security and stability research in new-type power systems[J]. Zhejiang Electric Power, 2024, 43(10): 12-26.
[3]
陈心宜, 胡秦然, 石庆鑫, 等. 新型电力系统居民分布式资源管理综述[J]. 电力系统自动化, 2024, 48(5): 157-175.
CHEN Xinyi, HU Qinran, SHI Qingxin, et al. Review on residential distributed energy resource management in new power system[J]. Automation of Electric Power Systems, 2024, 48(5): 157-175.
[4]
李志浩, 倪筹帷, 陈哲, 等. 考虑信息交互的微电网群分布式经济调度方法[J]. 浙江电力, 2023, 42(10): 8-16.
LI Zhihao, NI Chouwei, CHEN Zhe, et al. Distributed economic dispatching method for microgrid clusters considering information interaction[J]. Zhejiang Electric Power, 2023, 42(10): 8-16.
[5]
田健. 微电网绿色低碳发展的关键技术与应用[J]. 计量科学与技术, 2023, 67(7): 25-33.
TIAN Jian. Key technologies and applications for the green and low-carbon advancement of microgrids[J]. Metrology Science and Technology, 2023, 67(7): 25-33.
[6]
许中阳, 宋晓通. 含高比例清洁能源的微电网多目标优化调度策略[J]. 分布式能源, 2023, 8(2): 19-25.
XU Zhongyang, SONG Xiaotong. Multi-objective optimal scheduling strategy for microgrid with high permeability clean energy[J]. Distributed Energy, 2023, 8(2): 19-25.
[7]
邱益林. 智能电网可再生能源微电网系统设计分析[J]. 太阳能学报, 2023, 44(8): 568.
QIU Yilin. Design and analysis of renewable energy microgrid system in smart grid[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 568.
[8]
艾平, 彭宇志, 金柯达, 等. 面向低碳村镇的可再生能源热电联供系统仿真与优化[J]. 农业机械学报, 2023, 54(S2): 350-358.
AI Ping, PENG Yuzhi, JIN Keda, et al. Simulation and optimization of renewable energy cogeneration system for low-carbon villages and towns[J]. Journal of Agricultural Machinery, 2023, 54(S2): 350-358.
[9]
刘金华, 陈璐, 刘凡骞, 等. 风-光-抽水蓄能互补系统经济容量配置研究[J]. 供用电, 2025, 42(4): 99-107.
LIU Jinhua, CHEN Lu, LIU Fanqian, et al. Study on economic capacity allocation for wind-solar-pumped storage complementary system[J]. Distribution & Utilization, 2025, 42(4): 99-107.
[10]
杨跃, 安然然, 梁晓兵, 等. 计及灵活性约束的配电网-微电网灵活性资源协同规划模型[J]. 广东电力, 2023, 36(8): 54-69.
YANG Yue, AN Ranran, LIANG Xiaobing, et al. Collaborative planning model of distribution network-microgrid flexibility resources with flexibility constraints[J]. Guangdong Electric Power, 2023, 36(8): 54-69.
[11]
赵安军, 李旺, 于军琪, 等. 基于户间调度的青海农村家庭光储容量配置优化[J]. 电力系统及其自动化学报, 2023, 35(7): 45-56.
ZHAO Anjun, LI Wang, YU Junqi, et al. Configuration optimization of photovoltaic and energy storage capacity for rural households in Qinghai Province based on inter-user dispatching[J]. Proceedings of the CSU-EPSA, 2023, 35(7): 45-56.
[12]
端木陈睿, 史林军, 蹇德平, 等. 计及多时间尺度的梯级水-风-光互补基地储能容量优化配置[J]. 电力自动化设备, 2024, 44(7): 173-179.
DUANMU Chenrui, SHI Linjun, JIAN Deping, et al. Optimization of energy storage capacity allocation in multi-time scales cascaded hydro-wind-solar base[J]. Electric Power Automation Equipment, 2024, 44(7): 173-179.
[13]
YUAN H Z, YE H H, CHEN Y T, et al. Research on the optimal configuration of photovoltaic and energy storage in rural microgrid[J]. Energy Reports, 2022, 8: 1285-1293.
[14]
金家桢, 易承东, 冯震. 偏远农村的风光储微网容量配置优化[J]. 电工材料, 2024(5): 92-96.
JIN Jiazhen, YI Chengdong, FENG Zhen. Optimization of capacity configuration for wind solar energy storage microgrid of remote rural areas[J]. Electrical Engineering Materials, 2024(5): 92-96.
[15]
侯永全, 徐敦彬, 袁晓冬, 等. 基于博弈论的含氢微网多主体能源系统优化配置[J]. 高压电器, 2024, 60(7): 48-59.
HOU Yongquan, XU Dunbin, YUAN Xiaodong, et al. Optimized allocation of hydrogen-containing micro grid multi-subject energy system based on game theory[J]. High Voltage Apparatus, 2024, 60(7): 48-59.
[16]
张冲标, 钱辰雯, 俞红燕, 等. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18.
ZHANG Chongbiao, QIAN Chenwen, YU Hongyan, et al. Interactive operation strategy for multi-scenario county-level multi-microgrid based on ADMM[J]. Electric Power, 2024, 57(2): 9-18.
[17]
黄冬梅, 陈柯翔, 孙锦中, 等. 含电解制氢装置及光热电站的海岛微网优化调度[J]. 电力系统及其自动化学报, 2022, 34(11): 24-31.
HUANG Dongmei, CHEN Kexiang, SUN Jinzhong, et al. Dispatch optimization of island microgrid with electrolytic hydrogen unit and CSP station[J]. Proceedings of the CSU-EPSA, 2022, 34(11): 24-31.
[18]
朱祖祥, 朱革兰, 秦飞翔. 基于博弈的多综合能源微网系统优化运行策略[J]. 广东电力, 2023, 36(2): 52-65.
ZHU Zuxiang, ZHU Gelan, QIN Feixiang. Optimal operation strategy of multi-integrated energy microgrid system based on game[J]. Guangdong Electric Power, 2023, 36(2): 52-65.
[19]
吕荣胜, 黄正伟, 魏业文, 等. 基于主从博弈的多微网共享储能优化调度研究[J]. 现代电子技术, 2024, 47(20): 46-50.
Rongsheng, HUANG Zhengwei, WEI Yewen, et al. Research on master-slave game based optimal scheduling of multi-MG shared energy storage[J]. Modern Electronics Technique, 2024, 47(20): 46-50.
[20]
王永利, 姜斯冲, 郭璐, 等. 基于共享氢容量备用的多微网双层优化方法[J]. 电力建设, 2024, 45(11): 65-78.
WANG Yongli, JIANG Sichong, GUO Lu, et al. Multiple microgrid bilayer optimization method based on shared hydrogen capacity backup[J]. Electric Power Construction, 2024, 45(11): 65-78.
[21]
王俊翔, 李华强, 邓靖微, 等. 考虑需求侧灵活性资源的商业园区微网多目标优化调度[J]. 电力建设, 2021, 42(3): 35-44.
摘要
大规模可再生能源、电动汽车(electric vehicle,EV)和变频空调(inverter air conditioner,IAC)接入商业园区微网(business park microgrid,BPMG)产生的波动性和不确定性为系统灵活运行带来新的挑战。文章提出了一种考虑需求侧灵活性资源的BPMG优化调度方法。基于EV和IAC需求响应模型,量化BPMG需求侧灵活性资源提供的灵活性供给。结合源侧固有灵活性资源和灵活性需求,提出灵活性不足严重度指标,定量评估系统运行灵活性供需失衡的严重程度。在此基础上,建立兼顾运行经济性和灵活性的BPMG多目标优化调度模型,并使用CPLEX优化软件求解。仿真结果表明,所提模型能够协调调度源、荷两侧各类灵活性资源,有效提升BPMG的运行灵活性。
WANG Junxiang, LI Huaqiang, DENG Jingwei, et al. Multi-objective optimal scheduling of business park microgrid considering demand-side flexible resources[J]. Electric Power Construction, 2021, 42(3): 35-44.

Integration of renewable energy, electric vehicles (EV), and inverter air conditioners (IAC) in the business park microgrid (BPMG) result in fluctuation and uncertainty, which lead to new challenges in operational flexibility of the BPMG. Therefore, a BPMG optimal scheduling method considering demand-side flexible resources is presented. Moreover, the flexible supply provided by BPMG demand-side flexible resource is quantified according to the demand response models of EV and IAC. And then, combined with the flexible resource and flexible demand at the source side, flexibility shortage severity is proposed for quantifying the imbalance severity between the flexible supply and flexible demand. On this basis, a BPMG multi-objective optimal scheduling model considering economy and flexibility is constructed, which can be solved by CPLEX optimization software. Experimental results show that the proposed model can significantly improve the operational flexibility of BPMG by coordinating various flexible resources on both supply and demand sides.

[22]
寇凌峰, 季宇, 曲雪原, 等. 含海洋能发电的海岛微网源荷储容量优化配置研究[J]. 电测与仪表, 2024, 61(5): 135-145.
KOU Lingfeng, JI Yu, QU Xueyuan, et al. Research on optimal capacity configuration of source, load and storage for island microgrid containing marine energy generation[J]. Electrical Measurement & Instrumentation, 2024, 61(5): 135-145.
[23]
檀勤良, 单子婧, 丁毅宏, 等. 考虑蓄电池与电制氢的多能源微网灵活性资源配置双层优化模型[J]. 电力建设, 2023, 44(2): 38-49.
摘要
高比例可再生能源的间歇性进一步加剧了电力系统安全稳定运行风险,使得灵活性资源配置愈发关键,因此有必要开展电力系统灵活性资源规划配置研究。文章提出了一种考虑蓄电池与电制氢设备特性的微网灵活性资源配置与运行协同优化双层模型。上层目标为系统年碳排放量最小与年化综合利润最大,下层目标为系统日运营利润最大,开展满足电-氢负荷下的容量规划案例分析,并设置不同灵活性技术成本下降情景,设计经济性、清洁性、灵活性指标对比评判不同情景下两种技术的竞争力。结果表明:所提优化配置方法能够以较小的经济代价实现系统环境效益的大幅提升,目前蓄电池相较电制氢技术更具综合性优势,但后者在未来具有更大的获益空间和市场潜力。
TAN Qinliang, SHAN Zijing, DING Yihong, et al. Bi-level optimal configuration for flexible resources of multi-energy microgrid considering storage battery and P2H[J]. Electric Power Construction, 2023, 44(2): 38-49.

The intermittence of high proportion of renewable energy further aggravates the insecure operation of power system, which makes flexible resources configuration more critical. Therefore, it is necessary to conduct research on flexible resources planning and configuration of power system. For the multi-energy microgrid, a bi-level collaborative optimization method of configuration and operation of flexible resources is proposed in this paper, considering the characteristics of storage battery and power to hydrogen (P2H) equipment. Taking the minimum total annual carbon emissions and the maximum comprehensive annual profit as the objective functions for the outer layer model, and choosing maximum daily operating profit for the inner layer model, a case study under electricity-hydrogen load is carried out. Then cost reduction scenarios of these two flexibility technologies is depicted, and economic, cleanliness and flexibility indices are designed to compare and evaluate the competitiveness of the two technologies in different conditions. The results show that the proposed optimal configuration method can prominently improve the environmental benefits of the microgrid with less economic cost. At present, compared with P2H technology, storage battery technology has overwhelming advantages, but the former will have greater profit margins and market potential in the future.

[24]
安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
摘要
针对风电、光伏大规模并网造成的供电可靠性问题和弃风、弃光问题,结合抽水蓄能、储能电站以及电解水制氢的调节特性,提出一种风光水储多能互补系统双层优化调度策略。上层模型以系统全生命周期运行经济性最优为目标,旨在优化系统各单元的容量配置,保证供电可靠性和风光消纳水平;下层模型以系统每个调度周期内经济性最优为目标,旨在充分发挥储能的调峰能力,实现系统经济运行。该模型利用KKT条件和Big-M法将双层模型转换成单层线性规划问题,通过Matlab中调用CPLEX求解器进行求解,结果表明所提策略能有效提高系统供电可靠性和风光的消纳水平,验证了该模型的有效性。
AN Yuan, ZHENG Shenyin, SU Rui, et al. Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 510-517.
In view of the power supply reliability problems caused by the large-scale grid connection of wind power and photovoltaic power, and wind and light abandonment problems, combined with the regulation characteristics of pumped storage, energy storage power plants and electrolytic water hydrogen production, a two-layer optimal dispatching strategy for wind water storage multi energy complementary system is proposed. The upper layer model aims to optimize the capacity configuration of each unit of the system to ensure the reliability of power supply and the level of wind and solar energy consumption, with the objective of optimizing the operating economy of the system throughout its life cycle; The lower level model aims to optimize the economy of the system in each dispatching cycle, and aims to give full play to the peak shaving output of energy storage to achieve economic operation of the system. The model uses KKT condition and Big-M method to transform the two-layer model into a single-layer linear programming problem, and calls CPLEX solver in Matlab to solve it. The results show that the proposed strategy can effectively improve the power supply reliability of the system and the absorption level of wind and solar energy, which verifies the effectiveness of the model.
[25]
WANG W J, LI C, HE Y, et al. Enhancement of household photovoltaic consumption potential in village microgrid considering electric vehicles scheduling and energy storage system configuration[J]. Energy, 2024, 311: 133330.
[26]
杨昆, 刘通, 柏林, 等. 基于谈判博弈的微电网群多主体共享储能容量优化配置策略[J]. 电测与仪表, 2024, 61(3): 33-41.
YANG Kun, LIU Tong, BAI Lin, et al. Optimal configuration strategy of shared energy storage capacity for micro-grid cluster based on multi-party bargaining game[J]. Electrical Measurement & Instrumentation, 2024, 61(3): 33-41.
[27]
赵杰, 王聪, 李冠冠, 等. 考虑需求响应的多微网P2P能源交易低碳运行策略[J]. 电力建设, 2023, 44(12): 54-65.
摘要
随着“双碳”目标的提出,微电网作为分布式电源利用的有效形式,受到能源管理应用领域的广泛关注。随着微电网数量增加,多微网端对端(peer to peer,P2P)能源交易有助于促进区域内能源的互联互济和清洁能源的就地消纳。在考虑微电网的碳排放特性和需求响应潜力的基础上,构建多微网P2P能源交易模型实现配电侧供需协同以及确定其最优交易策略。首先,提出了微电网运行优化模型,以运行费用最小化为目标鼓励微电网参与需求响应;其次,实现微电网内部购售电和储能充放电碳排放的量化,并计算微电网的碳排放成本;再次,基于广义纳什议价理论构建P2P能源交易模型并在模型中加入潮流约束,在保证电力系统安全稳定运行的基础上实现多微网的能源共享和收益分配。最后,基于IEEE-33节点系统进行算例分析。结果表明,考虑需求响应和碳排放费用的多微网P2P能源交易有助于促进微电网之间的能源共享和新能源消纳。
ZHAO Jie, WANG Cong, LI Guanguan, et al. Low-carbon operation strategy for P2P energy trading among multiple microgrids considering demand response[J]. Electric Power Construction, 2023, 44(12): 54-65.
With the introduction of the “double carbon” target, microgrid is considered an effective form that integrates renewable power sources and improves energy utilization efficiency. In line with the increasing number of microgrids, peer-to-peer (P2P) energy trading among multiple microgrids is regarded as an effective solution for energy sharing and integration of distribution generation. This study proposes a P2P energy trading model that accounts for demand response and carbon emission characteristics to achieve supply and demand coordination while determining the optimal operation strategy. First, the microgrid in the model solves an economic optimization problem by participating in the demand response. Second, by considering carbon emission factors, the model offers a great opportunity to reduce operation and carbon emission costs, accounting for energy transactions and energy storage scheduling. To incentivize energy sharing among multiple microgrids, a P2P energy-trading model based on generalized Nash bargaining was developed that enables energy sharing and revenue allocation. In addition, optimal power flow constraints were incorporated into the model to enhance the security of power system operations. Finally, a simulation of the IEEE-33 system demonstrates that P2P energy trading among multiple microgrids effectively reduces operating costs and promotes the integration of renewable energy sources.
[28]
贝斌斌, 乐程毅. 基于供需博弈的园区综合能源微网系统优化[J]. 自动化仪表, 2023, 44(2): 91-96.
BEI Binbin, LE Chengyi. Optimization of integrated energy micro- grid system in campus based on supply and demand game[J]. Process Automation Instrumentation, 2023, 44(2): 91-96.
[29]
徐艳春, 刘海权, 孙思涵, 等. 计及需求响应和共享储能的多微网系统双层优化调度[J]. 电力自动化设备, 2023, 43(6): 18-26.
XU Yanchun, LIU Haiquan, SUN Sihan, et al. Bi-level optimal scheduling of multi-microgrid system considering demand response and shared energy storage[J]. Electric Power Automation Equipment, 2023, 43(6): 18-26.
[30]
胡俊杰, 曲佳桐, 王文浩. 基于模型预测控制的高速公路综合能源微网群分布式能量优化调度方法[J]. 广东电力, 2024, 37(12): 87-96.
HU Junjie, QU Jiatong, WANG Wenhao. Distributed energy optimization scheduling of highway integrated energy microgrid group based on model predictive control[J]. Guangdong Electric Power, 2024, 37(12): 87-96.
[31]
吴睿行, 刘丽军, 林锟, 等. 考虑虚拟储能参与的多微网混合博弈运行策略[J/OL]. 电网技术,1-15.[2024-08-27].https://doi.org/10.13335/j.1000-3673.pst.2024.1905.
WU Ruixing, LIU Lijun, LIN Kun, et al. Multi-microgrid hybrid game operation strategy considering virtual energy storage participation[J/OL]. Power System Technology, 1-15.[2024-08-27].https://doi.org/10.13335/j.1000-3673.pst.2024.1905.
[32]
杨磊, 周凯旋, 贺凯, 等. 温度修正对光伏发电系统性能比影响分析[J]. 可再生能源, 2024, 42(1): 16-21.
YANG Lei, ZHOU Kaixuan, HE Kai, et al. Analysis of temperature correction influence on performance ratio of photovoltaic system[J]. Renewable Energy Resources, 2024, 42(1): 16-21.
[33]
张雷, 刘思彤, 李勇. 分布式光伏发电系统并网技术分析[J]. 电子技术, 2024, 53(2): 372-374.
ZHANG Lei, LIU Sitong, LI Yong. Analysis of grid connection technology for distributed photovoltaic power generation systems[J]. Electronic Technology, 2024, 53(2): 372-374.
[34]
卢颖辉. 计及微网储能系统多尺度不确定性容量协调优化[J]. 储能科学与技术, 2021, 10(6): 2235-2243.
摘要
微网系统中的分布式电源和负荷需求的随机问题促使微网储能容量决策成为一个研究的热点话题。本文提出了多时间尺度下微网系统中源-荷的随机性和预测出力偏差的不确定性的储能容量优化方法。利用该方法建立了系统能量平衡关系和鲁棒性经济协调指标,刻画出了储能系统容量优化方法和微网随机因子间的定量关系,并兼顾微网运行经济性的目标。结合分层理论建立了含分布式电源的微网储能容量的双层优化模型,并采用多目标粒子群算法对本文的优化模型进行求解。仿真结果表明,所提方法能够保证储能系统容量优化配置,同时能获得良好的经济效益。
LU Yinghui. Capacity coordination and optimization considering multi-scale uncertainty of micro-grid energy storage system[J]. Energy Storage Science and Technology, 2021, 10(6): 2235-2243.

The random problem of distributed power and load demand in the micro-grid system makes the selection of micro-grid energy storage capacity an important research topic. This paper proposes an energy storage capacity optimization method for micro-grid systems based on the randomness of source-load and the uncertainty of predicted output deviation over multiple time scales. his method is used to establish the system energy balance relationship and the robust economic coordination index, as well as to depict the quantitative relationship between the energy storage system capacity optimization method and the micro-grid stochastic factor Furthermore, the goal of the micro-grid operation economy is considered. In this paper, a two-layer optimization model of the energy storage capacity of the micro-grid with distributed power sources is established and solved using the multi-objective particle swarm optimization (MOPSO) algorithm. The simulation results demonstrate that the proposed method not only ensures the optimal configuration of the energy storage system capacity but also achieves good economic efficiency.

[35]
王尚斌, 苑丽伟, 方莹, 等. 计及新能源波动的分布式储能分层控制策略[J]. 山东电力技术, 2024, 51(9): 74-84.
WANG Shangbin, YUAN Liwei, FANG Ying, et al. Distributed energy storage layered control strategy considering renewable energy fluctuations[J]. Shandong Electric Power, 2024, 51(9): 74-84.

基金

国家自然科学基金项目(72342007)
中央高校基本科研业务费专项资金资助(2023FR001)

编辑: 魏希辉
PDF(2765 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/