考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化调度

熊超煜, 徐丹, 钟政星, 杨德昌, 张李军

电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 99-112.

PDF(1738 KB)
PDF(1738 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 99-112. DOI: 10.12204/j.issn.1000-7229.2025.10.009
调度运行

考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化调度

作者信息 +

Optimization Dispatch of a Biomass Integrated Energy System Considering Reward-Penalty Continuous Carbon Trading and Diversified Hydrogen Energy Applications

Author information +
文章历史 +

摘要

【目的】为提升生物质能综合能源系统(integrated energy system,IES)的能源利用效率和灵活性,促进高渗透率新能源消纳以及实现氢能的高效利用,降低系统的运行成本和碳排放量,提出一种考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化运行策略。【方法】首先对包含生物质有机朗肯循环热电联产(organic Rankine cycle-combined heat and power,ORC-CHP)机组、风电机组、光伏机组、氢能多元化应用模块以及各储能设备的综合能源系统进行建模,其中氢能多元化应用模块对氢能应用进行综合考虑,包含电解槽(electrolyzer,EL)、甲烷反应器(methane reactor,MR)、甲醇合成反应器(methanol synthesis reactor,MSR)和热电比可调的氢燃料电池(hydrogen fuel cell,HFC)设备。其次,对非等步长排放区间的奖罚连续式碳交易机制进行建模。最后,构建以包含系统购能成本、碳交易成本、弃风弃光惩罚成本、出售甲醇收益等系统运行总成本最小化为目标的优化调度模型,并运用CPLEX商业求解器进行求解。【结果】仿真分析表明,相较于传统生物质热电联产(combined heat and power,CHP)机组,所提策略可实现系统碳排放量降低28.35%,运行总成本降低16.20%;相较于阶梯式碳交易机制,其系统碳排放量降低271.6 kg,验证了所提策略可以提升IES的低碳性和经济性。【结论】采用生物质ORC-CHP技术可以显著降低系统运行成本与碳排放;氢能多元化应用提升了新能源就地消纳率,增强IES的稳定性与经济性,同时兼具低碳效益与商品收益;非等步长排放区间的奖罚连续式碳交易机制可以规避阶梯式机制的边界套利问题,更加灵活地引导减排行为,提升系统低碳性与经济性。

Abstract

[Objective] To enhance the energy utilization efficiency and flexibility of biomass integrated energy systems(IES), promote the accommodation of high-penetration renewable energy, achieve efficient hydrogen utilization, and reduce system operating costs and carbon emissions, this paper proposes an optimized operation strategy for biomass IES that incorporates reward-penalty continuous carbon trading and diversified hydrogen energy applications. [Methods] First, a comprehensive energy system is modeled by incorporating a biomass organic Rankine cycle combined with heat and power (ORC-CHP) units, wind turbines, photovoltaic units, a diversified hydrogen utilization module, and various energy storage devices. The hydrogen utilization module holistically integrates hydrogen applications including electrolyzers (EL), methane reactors (MR), methanol synthesis reactors (MSR), and hydrogen fuel cell (HFC) devices with adjustable heat-to-power ratios. Second, a reward-penalty continuous carbon trading mechanism based on non-uniform emission intervals is established. Finally, an optimal scheduling model is constructed with the objective of minimizing the total operating costs of the system, including energy procurement costs, carbon trading expenses, wind and solar curtailment penalties, and methanol sales revenue, and is solved using the commercial solver CPLEX. [Results] The simulation analysis demonstrates that compared to traditional biomass CHP units, the proposed strategy can reduce system carbon emissions by 28.35% and lower total operating costs by 16.20%. Furthermore, it reduces the system carbon emissions by 271.6 kg relative to the stepped carbon trading mechanism, confirming that the proposed strategy enhances both the low-carbon performance and economic efficiency of the IES. [Conclusions] The adoption of biomass ORC-CHP technology can significantly reduce system operational costs and carbon emissions. Diversified hydrogen energy applications enhance the local utilization rate of renewable energy while improving the stability and economic performance of IES, combining low-carbon benefits with commercial revenue. The continuous incentive-penalty carbon trading mechanism with non-uniform emission intervals effectively avoids boundary arbitrage issues inherent in stepped mechanisms, offering more flexible guidance for emission reduction behaviors, thereby enhancing the system's low-carbon performance and economic efficiency.

关键词

生物质能 / 有机朗肯循环 / 奖罚连续式碳交易 / 氢能多元化应用 / 综合能源系统(IES)

Key words

biomass energy / organic Rankine cycle / reward-penalty continuous carbon trading / diversified hydrogen energy applications / integrated energy system(IES)

引用本文

导出引用
熊超煜, 徐丹, 钟政星, . 考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化调度[J]. 电力建设. 2025, 46(10): 99-112 https://doi.org/10.12204/j.issn.1000-7229.2025.10.009
XIONG Chaoyu, XU Dan, ZHONG Zhengxing, et al. Optimization Dispatch of a Biomass Integrated Energy System Considering Reward-Penalty Continuous Carbon Trading and Diversified Hydrogen Energy Applications[J]. Electric Power Construction. 2025, 46(10): 99-112 https://doi.org/10.12204/j.issn.1000-7229.2025.10.009
中图分类号: TM73   

参考文献

[1]
LI S Y, YAO L L, ZHANG Y C, et al. China’s provincial carbon emission driving factors analysis and scenario forecasting[J]. Environmental and Sustainability Indicators, 2024, 22: 100390.
[2]
王婷, 张晶, 高冲, 等. 绿证-碳市场互认抵消下综合能源系统优化调度[J]. 智慧电力, 2025, 53(2): 104-110, 118.
WANG Ting, ZHANG Jing, GAO Chong, et al. Optimal scheduling of integrated energy system under mutual recognition and offset of green certificate and carbon market[J]. Smart Power, 2025, 53(2): 104-110, 118.
[3]
秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 8-13, 22.
QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42(14): 8-13, 22.
[4]
翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53(8): 9-18.
ZHAI Jingjing, WU Xiaobei, FU Zhixin, et al. Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J]. Electric Power, 2020, 53(8): 9-18.
[5]
殷超. 考虑碳捕集与需求响应的综合能源系统低碳调度[D]. 西安: 西安理工大学, 2023.
YIN Chao. Low carbon scheduling of integrated energy systems considering carbon capture and demand response[D]. Xi’an: Xi’an University of Technology, 2023.
[6]
郭斯琦, 楼劲, 郑凌蔚. 考虑热网特性的综合能源系统混合时间尺度调度方法[J]. 电力建设, 2024, 45(12): 16-26.
GUO Siqi, LOU Jin, ZHENG Lingwei. Hybrid time scale scheduling method for integrated energy systems considering the characteristics of heating networks[J]. Electric Power Construction, 2024, 45(12): 16-26.
[7]
彭寒梅, 张玲, 谭貌, 等. 重构与抢修协同下电-气区域综合能源系统多阶段博弈故障恢复方法[J]. 电力建设, 2024, 45(12): 27-38.
PENG Hanmei, ZHANG Ling, TAN Mao, et al. Multi-stage game fault recovery method for electricity-gas regional integrated energy system under reconfiguration and repair coordination[J]. Electric Power Construction, 2024, 45(12): 27-38.
[8]
周任军, 吴燕榕, 潘轩, 等. 考虑电热需求响应的区域综合能源系统储能容量优化配置[J]. 电力科学与技术学报, 2023, 38(1):11-17.
ZHOU Renjun, WU Yanrong, PAN Xuan, et al. Optimal placement of energy storage in a regional integrated energy system considering electric and thermal demand responses[J]. Journal of Electric Power Science and Technology, 2023, 38(1):11-17.
[9]
李家桐, 谢宁, 王承民, 等. 基于CHP机组碳排放分析的综合能源系统低碳调度优化方法[J]. 智慧电力, 2024, 52(6): 31-37, 83.
LI Jiatong, XIE Ning, WANG Chengmin, et al. Low-carbon dispatch optimization method for integrated energy system based on carbon emission analysis of CHP units[J]. Smart Power, 2024, 52(6): 31-37, 83.
[10]
姜飞, 肖昌麟, 易子木, 等. 含光伏与生物质能的生态农业综合能源系统多能协同及低碳运行策略[J]. 中国电机工程学报, 2024, 44(4): 1352-1364.
JIANG Fei, XIAO Changlin, YI Zimu, et al. Multi-energy cooperation and low-carbon operation strategy of eco-agricultural integrated energy system containing photovoltaic and biomass energy[J]. Proceedings of the CSEE, 2024, 44(4): 1352-1364.
[11]
姜德威, 高红均, 贺帅佳, 等. 考虑生物质能和农业柔性负荷的农业产业园区综合能源系统规划方法[J]. 电网技术, 2024, 48(5): 1836-1845.
JIANG Dewei, GAO Hongjun, HE Shuaijia, et al. Integrated energy system planning for agricultural industrial parks considering biomass energy and agricultural flexible load[J]. Power System Technology, 2024, 48(5): 1836-1845.
[12]
王守文, 李国祥, 闫文文, 等. 计及改进生物质燃气和阶梯碳交易的综合能源系统低碳经济调度[J]. 电力系统及其自动化学报, 2024, 36(2): 126-134, 143.
WANG Shouwen, LI Guoxiang, YAN Wenwen, et al. Low-carbon economic dispatching of integrated energy system including improved biomass natural gas and ladder-type carbon trading[J]. Proceedings of the CSU-EPSA, 2024, 36(2): 126-134, 143.
[13]
庞镇函. 基于有机朗肯循环的生物质能综合能源系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
PANG Zhenhan. Research on biomass integrated energy system energy based on organic Rankine cycle[D]. Harbin: Harbin Institute of Technology, 2021.
[14]
李金鸿, 刘洋, 许立雄. 计及综合需求响应的综合能源系统集群多能源精细化日前交易模型[J]. 电力建设, 2024, 45(12): 83-99.
LI Jinhong, LIU Yang, XU Lixiong. Multi-energy refined day-ahead trading model of integrated energy system cluster considering integrated demand response[J]. Electric Power Construction, 2024, 45(12): 83-99.
[15]
陈维荣, 冉韵早, 韩莹, 等. 考虑两阶段电转气的区域综合能源系统优化调度[J]. 西南交通大学学报, 2023, 58(6): 1221-1230.
CHEN Weirong, RAN Yunzao, HAN Ying, et al. Optimal scheduling of regional integrated energy systems under two-stage power to gas[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1221-1230.
[16]
张林垚, 吴桂联, 倪识远, 等. 考虑参数自适应阶梯碳交易的含混氢: 碳捕集耦合的农村综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(3): 228-241.
ZHANG Linyao, WU Guilian, NI Shiyuan, et al. Optimal scheduling of an integrated rural energy system with coupled hybrid hydrogen-carbon capture considering parameter adaptive stepped carbon trading[J]. Journal of Electric Power Science and Technology, 2024, 39(3): 228-241.
[17]
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
[18]
张新闻, 刘玉洁, 刘文泽. 基于阶梯碳交易的含生物天然气与电醇联产的综合能源系统优化调度[J]. 西北工程技术学报, 2024, 23(4): 364-371, 378.
ZHANG Xinwen, LIU Yujie, LIU Wenze. Optimization and scheduling of integrated energy system containing biomethane and electro-fuel co-production based on tiered carbon trading[J]. Journal of Northwest Engineering Technology, 2024, 23(4): 364-371, 378.
[19]
袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
YUAN Wenteng, CHEN Liang, WANG Chunbo, et al. Bi-level optimal scheduling of power-to-ammonia coupling wind-photovoltaic-thermal integrated energy system based on ammonia energy storage technology[J]. Proceedings of the CSEE, 2023, 43(18): 6992-7003.
[20]
崔杨, 孙喜斌, 付小标, 等. 考虑电转氨和生物质废能转换的农村化工综合能源系统低碳调度方法[J]. 电网技术, 2024, 48(8): 3350-3360.
CUI Yang, SUN Xibin, FU Xiaobiao, et al. Low-carbon dispatch method of rural chemical industry integrated energy system considering power to ammonia and biomass waste energy conversion[J]. Power System Technology, 2024, 48(8): 3350-3360.
[21]
武群丽, 白佳怡. 考虑阶梯碳交易及两阶段电转气的综合能源系统优化调度[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-12. (2024-04-19)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20240419.1446.002.html.
WU Qunli, BAI Jiayi. Optimal scheduling of comprehensive energy system considering step carbon trading and two-stage electricity-to-gas conversion[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2024: 1-12. (2024-04-19)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20240419.1446.002.html.
[22]
陈景文, 叶鹏程, 刘耀先, 等. 基于阶梯碳交易的含碳捕集与高耗能负荷的虚拟电厂优化调度[J/OL]. 电网技术, 1-17. (2025-04-18) [2025-05-15]. https://doi.org/10.13335/j.1000-3673.pst.2025.0155.
CHEN Jingwen, YE Pengcheng, LIU Yaoxian, et al. Optimization dispatch of virtual power plant with carbon capture and high-energy-consumption loads based on stepped carbon trading[J/OL]. Power System Technology, 1-17. (2025-04-18) [2025-05-15]. https://doi.org/10.13335/j.1000-3673.pst.2025.0155.
[23]
易纯, 肖辉, 吴公平, 等. 含电、冷、热、气的区域综合能源系统优化运行[J]. 电力科学与技术学报, 2024, 39(4): 215-221.
YI Chun, XIAO Hui, WU Gongping, et al. Optimal operation of regional integrated energy system including electricity, cooling, heating and gas[J]. Journal of Electric Power Science and Technology, 2024, 39(4): 215-221.
[24]
周永旺, 许灿城, 蔡政彤, 等. 考虑奖惩碳交易的含灵活性设备联合运行的综合能源系统优化[J/OL]. 上海交通大学学报, 1-25. (2025-01-16) [2025-05-14]. https://doi.org/10.16183/j.cnki.jsjtu.2024.291.
ZHOU Yongwang, XU Cancheng, CAI Zhengtong, et al. Optimization of integrated energy system with joint operation of flexible equipment considering reward and penalty carbon trading[J/OL]. Journal of Shanghai Jiaotong University, 1-25. (2025-01-16) [2025-05-14]. https://doi.org/10.16183/j.cnki.jsjtu.2024.291.
[25]
QUOILIN S, VAN DEN BROEK M, DECLAYE S, et al. Techno-economic survey of organic Rankine cycle (ORC) systems[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 168-186.
[26]
PACHECO TORRES P J, VENTURINI O J, ESCOBAR PALACIO J C, et al. Biomass based Rankine cycle, ORC and gasification system for electricity generation for isolated communities in Bonfim city, Brazil[J]. IET Renewable Power Generation, 2019, 13(5): 737-743.
[27]
吕博文. 复混生物质有机朗肯循环系统的热力性能与成本分析[J]. 能源与节能, 2024(1): 58-62.
LYU Bowen. Thermal performance and cost of organic Rankine cycle system for mixed biomass[J]. Energy and Energy Conservation, 2024(1): 58-62.
[28]
陈明健, 陈胜, 王异成, 等. 考虑氢能绿证的电-氢综合能源系统机会约束优化调度[J]. 电力自动化设备, 2023, 43(12): 206-213.
CHEN Mingjian, CHEN Sheng, WANG Yicheng, et al. Chance constrained optimal scheduling of electric-hydrogen integrated energy system considering green certificate of hydrogen energy[J]. Electric Power Automation Equipment, 2023, 43(12): 206-213.
[29]
刘珊珊, 李柯睿, 刘柏康, 等. 绿证-碳联合机制下含多类型需求响应和氢能多元利用的综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(5): 203-215, 225.
LIU Shanshan, LI Kerui, LIU Baikang, et al. Optimal dispatching of integrated energy systems with diverse demand response and multifaceted hydrogen utilization under green certificate-carbon joint mechanism[J]. Journal of Electric Power Science and Technology, 2024, 39(5): 203-215, 225.
[30]
周奕佳, 彭弘毅, 晏鸣宇. 氢-电-热综合能源系统快速风险评估方法[J]. 智慧电力, 2025, 53(5): 1-7.
ZHOU Yijia, PENG Hongyi, YAN Mingyu. A rapid risk assessment method for hydrogen-electric-thermal integrated energy systems[J]. Smart Power, 2025, 53(5): 1-7.
[31]
王心玉, 李金航, 陈衡, 等. 同时参与绿证交易-碳交易的区域多能互补电力系统优化调度[J]. 动力工程学报, 2025, 45(2): 315-324.
摘要
采用基于火力发电的风光储联合多能互补系统优化调度模型,利用风电和光伏2种可再生能源发电机组,与火电机组配合发电,以满足城市基本负荷。利用储能单元补偿可再生能源机组发电的不稳定性,且为了进一步减少系统的碳排放量,引入绿证交易-碳交易机制,并在2种交易下分别采用阶梯价格,绿证带来的碳减排量可以抵消部分碳排,调整参与绿证市场的可交易绿证数量和参与碳市场的可交易碳排放量。算例以系统综合运行收益最高为目标,同时考虑系统的运行经济性和低碳性,对所提出的模型进行仿真分析,算例结果证明了该模型在减碳和经济性方面的合理性和有效性。
WANG Xinyu, LI Jinhang, CHEN Heng, et al. Optimization scheduling of regional multi-energy complementary power system participating simultaneously in green certificate trading-carbon trading[J]. Journal of Chinese Society of Power Engineering, 2025, 45(2): 315-324.
An optimal scheduling model for a wind-solar-storage combined multi-energy complementary system based on thermal power generation was adopted and the wind and photovoltaic renewable energy generation units were used in coordination with thermal power units to meet basic urban load demands. Energy storage units were utilized to compensate for the instability of power generation of renewable energy units, and to further reduce the carbon emissions of the system, the green certificate trading-carbon trading mechanism was introduced. Under both trading schemes, a ladder pricing system was applied. The carbon emission reduction brought by the green certificate can offset part of the carbon emission, and the number of tradable green certificates participating in the green certificate market and the tradable carbon emissions participating in the carbon market were adjusted. The example aimed to maximize the comprehensive operating income of the system, while considering the operation economy and low carbon of the system. The simulation analysis of the proposed model was carried out. The result of the example proves the rationality and effectiveness of the model in terms of carbon reduction and economy.
[32]
王汝田, 杨凌, 王秀云. 计及碳捕集电厂与电制氢的综合能源系统低碳优化运行[J]. 电气工程学报, 2024, 19(4): 368-376.
WANG Rutian, YANG Ling, WANG Xiuyun. Low carbon optimal operation of integrated energy system considering carbon capture power plant and electrolytic hydrogen[J]. Journal of Electrical Engineering, 2024, 19(4): 368-376.
[33]
YANG T, WANG Q C, WANG X D, et al. Low-carbon economic distributed dispatch for district-level integrated energy system considering privacy protection and demand response[J]. Applied Energy, 2025, 383: 125389.
[34]
张铭鹰, 赵毅, 张添硕, 等. 综合能源系统低碳经济优化调度研究[J]. 东北电力技术, 2024, 45(3): 38-43.
ZHANG Mingying, ZHAO Yi, ZHANG Tianshuo, et al. Research on integrated energy system low carbon economy optimized dispatching[J]. Northeast Electric Power Technology, 2024, 45(3): 38-43.
[35]
陈锦鹏. 考虑阶梯式碳交易与灵活性资源的综合能源系统优化调度[D]. 武汉: 武汉大学, 2022.
CHEN Jinpeng. Optimal dispatch of integrated energy system considering ladder-type carbon trading and flexible resources[D]. Wuhan: Wuhan University, 2022.
[36]
卢锦玲, 刘婧萱, 王惠东. 计及阶梯式碳-绿证联合交易和需求响应的生物质能综合能源系统优化[J]. 电力科学与工程, 2024, 40(7): 10-25.
LU Jinling, LIU Jingxuan, WANG Huidong. Optimization of biomass energy integrated energy system considering stepped carbon-green certificate joint transaction and demand response[J]. Electric Power Science and Engineering, 2024, 40(7): 10-25.
[37]
叶荣江, 高冲, 金耀, 等. 基于大规模制氢和碳交易的综合能源系统优化调度研究[J/OL]. 电力科学与工程, 2025: 1-10. (2025-05-09)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1328.TK.20250508.1852.034.html.
YE Rongjiang, GAO Chong, JIN Yao, et al. Research on optimal scheduling of integrated energy system based on large-scale hydrogen production and carbon trading[J/OL]. Electric Power Science and Engineering, 2025: 1-10. (2025-05-09)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1328.TK.20250508.1852.034.html.

基金

国家自然科学基金项目(52377127)

编辑: 张小飞
PDF(1738 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/