PDF(1738 KB)
考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化调度
熊超煜, 徐丹, 钟政星, 杨德昌, 张李军
电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 99-112.
PDF(1738 KB)
PDF(1738 KB)
考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化调度
Optimization Dispatch of a Biomass Integrated Energy System Considering Reward-Penalty Continuous Carbon Trading and Diversified Hydrogen Energy Applications
【目的】为提升生物质能综合能源系统(integrated energy system,IES)的能源利用效率和灵活性,促进高渗透率新能源消纳以及实现氢能的高效利用,降低系统的运行成本和碳排放量,提出一种考虑奖罚连续式碳交易和氢能多元化应用的生物质能综合能源系统优化运行策略。【方法】首先对包含生物质有机朗肯循环热电联产(organic Rankine cycle-combined heat and power,ORC-CHP)机组、风电机组、光伏机组、氢能多元化应用模块以及各储能设备的综合能源系统进行建模,其中氢能多元化应用模块对氢能应用进行综合考虑,包含电解槽(electrolyzer,EL)、甲烷反应器(methane reactor,MR)、甲醇合成反应器(methanol synthesis reactor,MSR)和热电比可调的氢燃料电池(hydrogen fuel cell,HFC)设备。其次,对非等步长排放区间的奖罚连续式碳交易机制进行建模。最后,构建以包含系统购能成本、碳交易成本、弃风弃光惩罚成本、出售甲醇收益等系统运行总成本最小化为目标的优化调度模型,并运用CPLEX商业求解器进行求解。【结果】仿真分析表明,相较于传统生物质热电联产(combined heat and power,CHP)机组,所提策略可实现系统碳排放量降低28.35%,运行总成本降低16.20%;相较于阶梯式碳交易机制,其系统碳排放量降低271.6 kg,验证了所提策略可以提升IES的低碳性和经济性。【结论】采用生物质ORC-CHP技术可以显著降低系统运行成本与碳排放;氢能多元化应用提升了新能源就地消纳率,增强IES的稳定性与经济性,同时兼具低碳效益与商品收益;非等步长排放区间的奖罚连续式碳交易机制可以规避阶梯式机制的边界套利问题,更加灵活地引导减排行为,提升系统低碳性与经济性。
[Objective] To enhance the energy utilization efficiency and flexibility of biomass integrated energy systems(IES), promote the accommodation of high-penetration renewable energy, achieve efficient hydrogen utilization, and reduce system operating costs and carbon emissions, this paper proposes an optimized operation strategy for biomass IES that incorporates reward-penalty continuous carbon trading and diversified hydrogen energy applications. [Methods] First, a comprehensive energy system is modeled by incorporating a biomass organic Rankine cycle combined with heat and power (ORC-CHP) units, wind turbines, photovoltaic units, a diversified hydrogen utilization module, and various energy storage devices. The hydrogen utilization module holistically integrates hydrogen applications including electrolyzers (EL), methane reactors (MR), methanol synthesis reactors (MSR), and hydrogen fuel cell (HFC) devices with adjustable heat-to-power ratios. Second, a reward-penalty continuous carbon trading mechanism based on non-uniform emission intervals is established. Finally, an optimal scheduling model is constructed with the objective of minimizing the total operating costs of the system, including energy procurement costs, carbon trading expenses, wind and solar curtailment penalties, and methanol sales revenue, and is solved using the commercial solver CPLEX. [Results] The simulation analysis demonstrates that compared to traditional biomass CHP units, the proposed strategy can reduce system carbon emissions by 28.35% and lower total operating costs by 16.20%. Furthermore, it reduces the system carbon emissions by 271.6 kg relative to the stepped carbon trading mechanism, confirming that the proposed strategy enhances both the low-carbon performance and economic efficiency of the IES. [Conclusions] The adoption of biomass ORC-CHP technology can significantly reduce system operational costs and carbon emissions. Diversified hydrogen energy applications enhance the local utilization rate of renewable energy while improving the stability and economic performance of IES, combining low-carbon benefits with commercial revenue. The continuous incentive-penalty carbon trading mechanism with non-uniform emission intervals effectively avoids boundary arbitrage issues inherent in stepped mechanisms, offering more flexible guidance for emission reduction behaviors, thereby enhancing the system's low-carbon performance and economic efficiency.
生物质能 / 有机朗肯循环 / 奖罚连续式碳交易 / 氢能多元化应用 / 综合能源系统(IES)
biomass energy / organic Rankine cycle / reward-penalty continuous carbon trading / diversified hydrogen energy applications / integrated energy system(IES)
| [1] |
|
| [2] |
王婷, 张晶, 高冲, 等. 绿证-碳市场互认抵消下综合能源系统优化调度[J]. 智慧电力, 2025, 53(2): 104-110, 118.
|
| [3] |
秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 8-13, 22.
|
| [4] |
翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53(8): 9-18.
|
| [5] |
殷超. 考虑碳捕集与需求响应的综合能源系统低碳调度[D]. 西安: 西安理工大学, 2023.
|
| [6] |
郭斯琦, 楼劲, 郑凌蔚. 考虑热网特性的综合能源系统混合时间尺度调度方法[J]. 电力建设, 2024, 45(12): 16-26.
|
| [7] |
彭寒梅, 张玲, 谭貌, 等. 重构与抢修协同下电-气区域综合能源系统多阶段博弈故障恢复方法[J]. 电力建设, 2024, 45(12): 27-38.
|
| [8] |
周任军, 吴燕榕, 潘轩, 等. 考虑电热需求响应的区域综合能源系统储能容量优化配置[J]. 电力科学与技术学报, 2023, 38(1):11-17.
|
| [9] |
李家桐, 谢宁, 王承民, 等. 基于CHP机组碳排放分析的综合能源系统低碳调度优化方法[J]. 智慧电力, 2024, 52(6): 31-37, 83.
|
| [10] |
姜飞, 肖昌麟, 易子木, 等. 含光伏与生物质能的生态农业综合能源系统多能协同及低碳运行策略[J]. 中国电机工程学报, 2024, 44(4): 1352-1364.
|
| [11] |
姜德威, 高红均, 贺帅佳, 等. 考虑生物质能和农业柔性负荷的农业产业园区综合能源系统规划方法[J]. 电网技术, 2024, 48(5): 1836-1845.
|
| [12] |
王守文, 李国祥, 闫文文, 等. 计及改进生物质燃气和阶梯碳交易的综合能源系统低碳经济调度[J]. 电力系统及其自动化学报, 2024, 36(2): 126-134, 143.
|
| [13] |
庞镇函. 基于有机朗肯循环的生物质能综合能源系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
| [14] |
李金鸿, 刘洋, 许立雄. 计及综合需求响应的综合能源系统集群多能源精细化日前交易模型[J]. 电力建设, 2024, 45(12): 83-99.
|
| [15] |
陈维荣, 冉韵早, 韩莹, 等. 考虑两阶段电转气的区域综合能源系统优化调度[J]. 西南交通大学学报, 2023, 58(6): 1221-1230.
|
| [16] |
张林垚, 吴桂联, 倪识远, 等. 考虑参数自适应阶梯碳交易的含混氢: 碳捕集耦合的农村综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(3): 228-241.
|
| [17] |
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
|
| [18] |
张新闻, 刘玉洁, 刘文泽. 基于阶梯碳交易的含生物天然气与电醇联产的综合能源系统优化调度[J]. 西北工程技术学报, 2024, 23(4): 364-371, 378.
|
| [19] |
袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
|
| [20] |
崔杨, 孙喜斌, 付小标, 等. 考虑电转氨和生物质废能转换的农村化工综合能源系统低碳调度方法[J]. 电网技术, 2024, 48(8): 3350-3360.
|
| [21] |
武群丽, 白佳怡. 考虑阶梯碳交易及两阶段电转气的综合能源系统优化调度[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-12. (2024-04-19)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20240419.1446.002.html.
|
| [22] |
陈景文, 叶鹏程, 刘耀先, 等. 基于阶梯碳交易的含碳捕集与高耗能负荷的虚拟电厂优化调度[J/OL]. 电网技术, 1-17. (2025-04-18) [2025-05-15]. https://doi.org/10.13335/j.1000-3673.pst.2025.0155.
|
| [23] |
易纯, 肖辉, 吴公平, 等. 含电、冷、热、气的区域综合能源系统优化运行[J]. 电力科学与技术学报, 2024, 39(4): 215-221.
|
| [24] |
周永旺, 许灿城, 蔡政彤, 等. 考虑奖惩碳交易的含灵活性设备联合运行的综合能源系统优化[J/OL]. 上海交通大学学报, 1-25. (2025-01-16) [2025-05-14]. https://doi.org/10.16183/j.cnki.jsjtu.2024.291.
|
| [25] |
|
| [26] |
|
| [27] |
吕博文. 复混生物质有机朗肯循环系统的热力性能与成本分析[J]. 能源与节能, 2024(1): 58-62.
|
| [28] |
陈明健, 陈胜, 王异成, 等. 考虑氢能绿证的电-氢综合能源系统机会约束优化调度[J]. 电力自动化设备, 2023, 43(12): 206-213.
|
| [29] |
刘珊珊, 李柯睿, 刘柏康, 等. 绿证-碳联合机制下含多类型需求响应和氢能多元利用的综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(5): 203-215, 225.
|
| [30] |
周奕佳, 彭弘毅, 晏鸣宇. 氢-电-热综合能源系统快速风险评估方法[J]. 智慧电力, 2025, 53(5): 1-7.
|
| [31] |
王心玉, 李金航, 陈衡, 等. 同时参与绿证交易-碳交易的区域多能互补电力系统优化调度[J]. 动力工程学报, 2025, 45(2): 315-324.
采用基于火力发电的风光储联合多能互补系统优化调度模型,利用风电和光伏2种可再生能源发电机组,与火电机组配合发电,以满足城市基本负荷。利用储能单元补偿可再生能源机组发电的不稳定性,且为了进一步减少系统的碳排放量,引入绿证交易-碳交易机制,并在2种交易下分别采用阶梯价格,绿证带来的碳减排量可以抵消部分碳排,调整参与绿证市场的可交易绿证数量和参与碳市场的可交易碳排放量。算例以系统综合运行收益最高为目标,同时考虑系统的运行经济性和低碳性,对所提出的模型进行仿真分析,算例结果证明了该模型在减碳和经济性方面的合理性和有效性。
An optimal scheduling model for a wind-solar-storage combined multi-energy complementary system based on thermal power generation was adopted and the wind and photovoltaic renewable energy generation units were used in coordination with thermal power units to meet basic urban load demands. Energy storage units were utilized to compensate for the instability of power generation of renewable energy units, and to further reduce the carbon emissions of the system, the green certificate trading-carbon trading mechanism was introduced. Under both trading schemes, a ladder pricing system was applied. The carbon emission reduction brought by the green certificate can offset part of the carbon emission, and the number of tradable green certificates participating in the green certificate market and the tradable carbon emissions participating in the carbon market were adjusted. The example aimed to maximize the comprehensive operating income of the system, while considering the operation economy and low carbon of the system. The simulation analysis of the proposed model was carried out. The result of the example proves the rationality and effectiveness of the model in terms of carbon reduction and economy.
|
| [32] |
王汝田, 杨凌, 王秀云. 计及碳捕集电厂与电制氢的综合能源系统低碳优化运行[J]. 电气工程学报, 2024, 19(4): 368-376.
|
| [33] |
|
| [34] |
张铭鹰, 赵毅, 张添硕, 等. 综合能源系统低碳经济优化调度研究[J]. 东北电力技术, 2024, 45(3): 38-43.
|
| [35] |
陈锦鹏. 考虑阶梯式碳交易与灵活性资源的综合能源系统优化调度[D]. 武汉: 武汉大学, 2022.
|
| [36] |
卢锦玲, 刘婧萱, 王惠东. 计及阶梯式碳-绿证联合交易和需求响应的生物质能综合能源系统优化[J]. 电力科学与工程, 2024, 40(7): 10-25.
|
| [37] |
叶荣江, 高冲, 金耀, 等. 基于大规模制氢和碳交易的综合能源系统优化调度研究[J/OL]. 电力科学与工程, 2025: 1-10. (2025-05-09)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1328.TK.20250508.1852.034.html.
|
AI小编
/
| 〈 |
|
〉 |