PDF(1688 KB)
PDF(1688 KB)
PDF(1688 KB)
面向次同步振荡分析的直驱风电场动态等值
Dynamic Equivalence of Direct-Drive Wind Farms for Sub-synchronous Oscillation Characterization
【目的】针对大规模直驱风电场详细电磁暂态建模面临“维数灾”导致计算负担过重,以及传统单机等值模型难以精确反映次同步振荡特性的问题,提出了一种高精度、高效率的风电场动态等值建模方法,以有效支撑风电并网系统次同步振荡特性分析,并揭示整个风电场振荡特性与关键振源机群特性之间的内在关联。【方法】基于风电并网系统的特征值分析计算主导特征值参与因子,辨识影响次同步振荡特性的关键因素,并基于K-means聚类算法,提出将运行工况、集电线路与系统状态变量稳态初值三者作为聚类指标的风电场分群动态等值建模方法,推导并给出了相应的分群等值参数计算方法。【结果】搭建30台直驱风机联网系统的电磁暂态仿真算例,从特征值、时域仿真结果对比,多角度验证了用于次同步振荡分析的分群聚合等值模型的有效性。【结论】所提出的基于主导特征值参与因子指导、融合运行工况、集电线路及状态变量初值三指标聚类的风电场多机分群等值建模方法,可显著提高次同步振荡分析的精度和效率,突破了单机等值局限,能够精准捕捉并分离风电场内部不同集群(特别是振源机群)对次同步振荡的贡献,可为大型直驱风电场并网系统的次同步振荡机理研究、稳定性评估及抑制策略制定提供可靠的建模工具。
[Objective] A high-precision and high-efficiency dynamic equivalent modeling method for wind farms is proposed to address the heavy computational burden caused by the curse of dimensionality in detailed electromagnetic transient modeling of large-scale direct-drive wind farms and to overcome the limitations of traditional single-machine equivalent models in accurately reflecting sub-synchronous oscillation characteristics. The method enables effective analysis of sub-synchronous oscillations in grid-connected wind power systems and reveals the inherent relationship between the oscillation behavior of the entire wind farm and that of key vibration source groups. [Methods] Based on an eigenvalue analysis of wind power grid-connected systems, the dominant eigenvalue participation factors were calculated to identify the key factors affecting the sub-synchronous oscillation characteristics. Based on the K-Means clustering algorithm, a dynamic equivalent modeling method for wind farm clustering is proposed, which uses the operating conditions, collection lines, and steady-state initial values of the system-state variables as clustering indicators. The corresponding clustering equivalent parameter calculation method was derived and presented. [Results] An electromagnetic transient simulation example was built for a networked system of 30 direct-drive wind turbines. The effectiveness of the clustering and aggregation equivalent model used for the sub-synchronous oscillation (SSO) analysis was verified from multiple perspectives by comparing the characteristic values and time-domain simulation results. [Conclusions] The proposed multimachine clustering equivalent modeling method for wind farms based on dominant eigenvalue participation factor guidance, fusion of operating conditions, collection lines, and initial values of state variables can significantly improve the accuracy and efficiency of SSO analysis, overcome the limitations of single-machine equivalence, and accurately capture and separate the contributions of different clusters (particularly vibration source clusters) within the wind farm to sub synchronous oscillations. This can provide a reliable modeling tool for the study of sub-synchronous oscillation mechanisms, stability evaluation, and suppression strategy formulation for large-scale direct-drive wind farm grid-connected systems.
直驱风电场 / 等值模型 / K-means聚类 / 次同步振荡(SSO)
direct-drive wind farms / equivalent modeling / K-means clustering / sub-synchronous oscillation (SSO)
| [1] |
陈心宜, 胡秦然, 石庆鑫, 等. 新型电力系统居民分布式资源管理综述[J]. 电力系统自动化, 2024, 48(5): 157-175.
|
| [2] |
|
| [3] |
|
| [4] |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
|
| [5] |
陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.
|
| [6] |
高本锋, 符章棋, 王刚, 等. 适用于次同步振荡分析的直驱风电场平衡降阶方法[J]. 电力工程技术, 2023, 42(3): 112-120.
|
| [7] |
马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4720-4732.
|
| [8] |
王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060.
|
| [9] |
王玉鹏, 严干贵, 穆钢, 等. 交流电流控制尺度下的并网VSC聚合建模研究[J]. 中国电机工程学报, 2022, 42(8): 2900-2910.
|
| [10] |
贾科, 孔繁哲, 张旸, 等. 基于改进K-均值算法的双馈风场故障等值建模方法[J]. 电网技术, 2023, 47(10): 4161-4173.
|
| [11] |
张鑫宇, 薛峰, 李碧君, 等. 双馈风场串补系统次同步振荡紧急控制策略[J]. 电力工程技术, 2023, 42(5): 108-116.
|
| [12] |
王玉鹏, 严干贵, 杨成, 等. 风电并网系统次同步等幅振荡机理与特性分析[J]. 华中科技大学学报(自然科学版), 2024, 52(7): 45-51.
|
| [13] |
|
| [14] |
韩平平, 王希, 王欢, 等. 基于移相变压器的直驱风机次同步振荡抑制[J]. 电力系统及其自动化学报, 2022, 34(4): 126-134.
|
| [15] |
|
| [16] |
潘学萍, 张弛, 鞠平, 等. 风电场同调动态等值研究[J]. 电网技术, 2015, 39(3): 621-627.
|
| [17] |
程东, 夏世威, 李庚银, 等. 含SVG的直驱风电场高频振荡分析及抑制策略[J]. 电力建设, 2023, 44(12): 115-124.
静止无功发生器(static var generator,SVG)与直驱风电机组(direct-drive permanent magnet synchronous generator, PMSG)相互作用引发的高频振荡威胁到直驱风电场的安全稳定运行。针对这一问题,文章首先建立含SVG的直驱风电场高频阻抗模型,分析高频振荡的形成机理;推导了SVG负阻尼区间的频率分布并分析了系统振荡稳定性,据此得出系统控制参数的稳定取值范围;然后基于振荡机理,提出了一种基于电流反馈的附加阻尼控制方法,通过SVG高频相位补偿实现对风电场高频振荡的有效抑制,并进行了控制参数整定;最后,在MATLAB/Simulink平台搭建直驱风电场电磁暂态仿真模型,验证了振荡分析方法和附加阻尼控制策略的有效性。
High-frequency oscillations caused by the interaction between an SVG and direct-drive permanent magnet synchronous generator (PMSG) threaten the safe and stable operation of PMSG-based wind farms. To resolve this problem, a high-frequency impedance model of a PMSG-based wind farm with SVG is first established in this paper, and the formation mechanism of high frequency oscillation is analyzed. The frequency distribution of the negative damping interval of the SVG is derived, and the oscillation stability of the system is analyzed, based on which the stable value range of the system control parameters is obtained. Based on the oscillation mechanism, an additional damping control method based on current feedback is proposed in this study. The high-frequency oscillation of the wind farm is effectively suppressed by SVG high-frequency phase compensation, and the parameters are adjusted. Finally, an electromagnetic transient simulation model of a PMSG-based wind farm is developed in MATLAB/Simulink to verify the effectiveness of the oscillation analysis method and additional damping control strategy.
|
| [18] |
陈洁, 郭志, 付翰翔, 等. 基于撬棒控制策略的DFIG风电场动态等值建模研究[J]. 高压电器, 2020, 56(3): 190-196.
|
| [19] |
胡文波, 贾祺, 刘侃, 等. 面向次同步振荡分析的直驱风电机群建模[J]. 太阳能学报, 2022, 43(2): 424-435.
针对低运行工况下直驱风电机群并网出现的次同步振荡(SSO)问题,基于图形化分块建模,在建立风力机、集电线路及电网等独立元件的模型基础上,构造不同集电线路拓扑结构下直驱风电机群的线性化模型。利用特征值分析法和阻抗分析法识别系统中存在的振荡模式,并分析运行工况、电流内环控制参数和风力机数量等因素对SSO频率和阻尼的影响。研究结果表明:d轴电流内环控制参数设置不合理是诱发直驱风电机群SSO的根本原因。在EMTDC/PSCAD中搭建直驱风电机群并网的时域仿真模型,验证了理论分析的正确性。
Aiming at the sub-synchronous oscillation(SSO) problem of direct-drive wind turbine cluster grid-connection under low operating conditions, based on the idea of graphical block modelling, the wind turbine generation (WTG), collector line and power grid are regarded as discrete components. On the basis of establishing detailed models of each component, the linearized model of direct-drive PMSG wind farm under different collector circuit topological structure is constructed. The oscillation modes in the system are identified by using the eigenvalue analysis method and impedance analysis, then the influence of current inner loop control parameters, operating conditions and WTGs number on the frequency and damping is analyzed. The results show that the oscillation phenomenon is caused by improper setting of <em>d</em>-axis current inner loop control parameters. Finally, a time-domain simulation model of direct drive PMSG based on wind farm connected to AC network is built in EMTDC/PSCAD and the simulation results verify the accuracy and validation of the theoretical analysis.
|
| [20] |
吴志鹏, 裴建华, 李银红. 基于低电压穿越功率特性的双馈风电场多机等值方法[J]. 电力系统自动化, 2022, 46(19): 95-103.
|
| [21] |
潘学萍, 戚相威, 梁伟, 等. 综合模型聚合和参数辨识的风电场多机等值及参数整体辨识[J]. 电力自动化设备, 2022, 42(1): 124-132.
|
| [22] |
付盼, 胡庆林. 基于聚类分析的风电场多机等效建模方法研究[J]. 高压电器, 2019, 55(4): 198-204.
|
| [23] |
|
| [24] |
郑文哲, 卜京, 张宁宇, 等. 考虑地形因素的风电场动态同调分群方法研究[J]. 可再生能源, 2019, 37(7): 1049-1054.
|
| [25] |
王雨欣, 王思怡, 杨黎晖, 等. 超级电容储能和卸荷电路协调控制的永磁同步风电机组低电压穿越策略[J]. 高压电器, 2023, 59(4): 177-185.
|
| [26] |
杨本星, 王伟, 杨明轩, 等. 辅助风电并网的构网型储能控制策略研究[J]. 高压电器, 2023, 59(7): 56-64.
|
| [27] |
袁慧涛, 袁文涛, 王文敬, 等. 基于阻抗分析法的双馈风电机组经串补线路并网系统的次同步振荡特性研究[J]. 山东电力技术, 2024, 51(11): 48-60.
|
| [28] |
陈平, 杜文娟. 基于新能源下混合风电场不同类型风机动态特性相似环节引起的振荡风险研究[J]. 电测与仪表, 2024, 61(12): 114-124.
|
| [29] |
梅耀丹, 梁新坤, 刘泳含, 等. 基于分频段辨识的永磁直驱风电场小信号等值方法[J]. 广东电力, 2023, 36(10): 77-83.
|
| [30] |
袁庆伟, 吴扣林, 谢晔源, 等. 不平衡电网下风电并网逆变器直接正负序功率控制[J]. 供用电, 2023, 40(1): 88-96, 104.
|
| [31] |
李博浩, 郭昆丽, 吕家君, 等. 次同步电流双通道附加阻尼抑制次同步振荡策略及阻抗模型分析[J]. 分布式能源, 2023, 8(6): 1-10.
|
AI小编
/
| 〈 |
|
〉 |