基于BIRCH和高斯云模型的分布式光伏出力异常感知

吴振扬, 马吉恩, 章天晗, 谭伟涛, 许诺, 林振智

电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 132-141.

PDF(2926 KB)
PDF(2926 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (10) : 132-141. DOI: 10.12204/j.issn.1000-7229.2025.10.012
新能源与储能

基于BIRCH和高斯云模型的分布式光伏出力异常感知

作者信息 +

Detection of Distributed Photovoltaic Output Anomalies Based on BIRCH and Gaussian Cloud Model

Author information +
文章历史 +

摘要

【目的】感知分布式光伏的出力异常对降低运维成本,提高发电效率具有重要意义。然而,由于分布式光伏受成本和地理分布限制,缺乏均值对比算法、四分位法和神经网络等现有光伏出力异常辨识算法所依赖的高精度辐照度数据,使得依赖光伏出力与辐照度线性相关特性的传统异常辨识方法难以适用于分布式光伏。【方法】基于此,提出一种基于平衡迭代规约层次聚类(balanced iterative reducing and clustering using hierarchies, BIRCH)和高斯云模型的分布式光伏出力异常感知方法。首先,提出一种基于BIRCH算法的光伏典型出力曲线辨识方法,通过提取分布式光伏的运行状态指标,并根据季节和天气划分场景集以排除气象干扰,识别分布式光伏的典型出力曲线。其次,提出一种基于高斯云模型的光伏出力异常感知方法,利用光伏数据的整体分布特征生成高斯云,并比对实时出力的高斯云与典型出力的高斯云,实现分布式光伏出力异常感知。【结果】以杭州某地分布式光伏为例进行验证分析,算例结果表明,所提算法能有效辨识光伏典型出力曲线,准确感知分布式光伏出力异常。【结论】场景集划分方法能有效降低分布式光伏异常感知对高精度辐照度数据的依赖;高斯云模型能准确感知光伏出力异常,所检测异常具有明确的高斯云参数特征,为后续相关研究提供了有益参考。

Abstract

[Objective] The detection of output anomalies in distributed photovoltaics can effectively reduce operational costs, which are important for enhancing the efficiency of distributed photovoltaic power generation. However, owing to the cost and geographical constraints of distributed photovoltaic systems, the high-precision irradiance data required by conventional anomaly detection methods, including mean comparison algorithms, quartile methods, and neural networks, are often unavailable. This limitation renders traditional anomaly-identification approaches, which depend on the linear correlation between photovoltaic output power and irradiance, largely inapplicable to distributed photovoltaic systems. [Methods] Based on this, a method for detecting output anomalies in distributed photovoltaics using the balanced iterative reducing and clustering using hierarchies (BIRCH) method and Gaussian cloud model is proposed. First, a method based on the BIRCH algorithm is used to identify typical photovoltaic output curves by extracting the operational indicators of distributed PV systems and categorizing scenarios based on season and weather. Second, an approach which generates Gaussian clouds from the overall PV data distributions is introduced and it compares real-time output clouds with typical output clouds to detect anomalies in the distributed PV outputs. [Results] A verification analysis is performed using a distributed photovoltaic system in a specific region of Hangzhou as a case study. The results demonstrate that the proposed algorithm effectively identifies typical photovoltaic output curves and accurately detects output anomalies in distributed photovoltaics. [Conclusions] The scene-set segmentation method can effectively eliminate the dependence of distributed photovoltaic anomaly detection on precise irradiance data. The Gaussian cloud model can effectively detect power output anomalies, with the detected anomalies having clear parametric characteristics, thereby providing a valuable reference for subsequent related research.

关键词

分布式光伏 / 出力异常感知 / 平衡迭代规约层次聚类(BIRCH) / 高斯云模型 / 场景集划分

Key words

distributed photovoltaic / output anomaly identification / balanced iterative reducing and clustering using hierarchies(BIRCH) / Gaussian cloud model / scene set division

引用本文

导出引用
吴振扬, 马吉恩, 章天晗, . 基于BIRCH和高斯云模型的分布式光伏出力异常感知[J]. 电力建设. 2025, 46(10): 132-141 https://doi.org/10.12204/j.issn.1000-7229.2025.10.012
WU Zhenyang, MA Jien, ZHANG Tianhan, et al. Detection of Distributed Photovoltaic Output Anomalies Based on BIRCH and Gaussian Cloud Model[J]. Electric Power Construction. 2025, 46(10): 132-141 https://doi.org/10.12204/j.issn.1000-7229.2025.10.012
中图分类号: TM615   

参考文献

[1]
尚博文, 徐铭铭, 张金帅, 等. 高比例分布式光伏接入背景下配电网电压调控方法研究综述[J]. 智慧电力, 2024, 52(12): 1-11.
SHANG Bowen, XU Mingming, ZHANG Jinshuai, et al. A review of voltage regulation methods for distribution networks in the context of high proportion of distributed photovoltaic integration[J]. Smart Power, 2024, 52(12): 1-11.
[2]
国家能源局. 2023年光伏发电建设情况[EB/OL]. (2024-02-28)[2025-01-26]. https://www.nea.gov.cn/2024-02 /28/c_1310765696.htm.
National Energy Administration. Description of photovoltaic power generation construction in 2023[EB/OL]. (2024-02-28)[2025-01-26]. https://www.nea.gov.cn/2024-02 /28/c_1310765696.htm.
[3]
王耀龙, 吴裕宙, 刘韵艺, 等. 基于GRU-贝叶斯的分布式光伏功率异常检测方法[J]. 太阳能学报, 2024, 45(7): 494-501.
WANG Yaolong, WU Yuzhou, LIU Yunyi, et al. GRU-Bayesian based method for distributed photovoltaic power anomaly detection[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 494-501.
[4]
王小宇, 刘波, 孙凯, 等. 光伏阵列故障诊断技术综述[J]. 电工技术学报, 2024, 39(20): 6526-6543.
WANG Xiaoyu, LIU Bo, SUN Kai, et al. A review of photovoltaic array fault diagnosis technology[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6526-6543.
[5]
王梦圆, 徐潇源, 严正. 适用小样本的并网光伏阵列故障诊断方法[J]. 电网技术, 2024, 48(2): 587-598.
WANG Mengyuan, XU Xiaoyuan, YAN Zheng. Simultaneous fault diagnosis of PV array operation considering small sample sizes[J]. Power System Technology, 2024, 48(2): 587-598.
[6]
马铭遥, 王海松, 马文婷, 等. 基于S-V特性分析的晶硅光伏组件阴影遮挡故障诊断[J]. 太阳能学报, 2022, 43(9): 64-72.
摘要
针对广泛使用的晶硅光伏组件,通过Simulink建立太阳电池双二极管精确仿真模型,对实际应用中最常见的光伏组件阴影遮挡故障进行多种工况的仿真验证。根据I-V曲线拐点、台阶、曲线下积分面积(S)下降的特征,提出一种基于S-V曲线特性的光伏组件阴影遮挡故障的在线诊断方法。该方法建立S-V曲线,根据S-V曲线分叉点位置可判断光伏组件遮挡情况,通过整体积分面积进而判断遮挡比例。对温度、辐照度进行折算,使该方法在全工况下适用。结合光伏组件功率优化器验证该诊断方法有较高的准确率,并且可准确地判断阴影遮挡面积,具有很高的实际应用价值。
MA Mingyao, WANG Haisong, MA Wenting, et al. Partial shadow fault diagnosis of crystalline silicon photovoltaic module based on s-v characteristic analysis[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 64-72.
For the widely used crystalline silicon photovoltaic (PV) modules, an accurate simulation model with double diodes of the solar cells is established on Simulink. The most common partial shading faults of PV modules in practical applications are simulated and verified under various working conditions. According to the characteristics of the inflection point, step and the integral area (<em>S</em>) based on the <em>I-V</em> curve, an online partial shading faults diagnosis method of PV modules using the characteristic of <em>S-V</em> curve is proposed. This method establishes the <em>S-V</em> curve of the PV module first, and judges the shading modes of PV modules according to the bifurcation point position of the <em>S-V </em> curve, and further judges the shading ratio by the overall integral area. The temperature and irradiance are normalized to make the method applicable for all working conditions. Combined with the PV module power optimizer, it is verified that the proposed diagnosis method has a high accuracy rate and can accurately estimate the shading area of each PV module.
[7]
孙旻, 曾伟, 陈波, 等. 基于故障串电流反向突变判据的光伏阵列线间故障保护方案[J]. 电力自动化设备, 2024, 44(4): 62-66.
SUN Min, ZENG Wei, CHEN Bo, et al. Line-line fault protection scheme of PV array based on current reverse mutation criterion of fault PV string[J]. Electric Power Automation Equipment, 2024, 44(4): 62-66.
[8]
PAN J N, ZOU Z B, SUN S, et al. Research on output distribution modeling of photovoltaic modules based on kernel density estimation method and its application in anomaly identification[J]. Solar Energy, 2022, 235: 1-11.
[9]
王于波, 郝玲, 徐飞, 等. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343.
摘要
分布式光伏功率不确定性的量化评估对于配电网安全稳定运行具有重要意义.考虑到不同出力波动模式下功率特性差异显著,为得出适应功率波动模式的预测模型并对功率不确定性进行精细化评估,提出一种分布式光伏集群发电功率波动模式识别与超短期概率预测方法.首先,综合卫星云图和光伏功率数据,通过出力波动的特征提取构建波动模式识别模型,实现对波动规律的挖掘.在此基础上,通过分类建模考虑不同波动模式的可预测性差异及波动模式与预测误差的关联关系,使预测区间宽度能更好地适应预测误差分布特征.由此实现对不同波动模式下功率不确定性的精细化考虑,从而提高概率预测精度,为电网调度提供更多参考,削弱分布式光伏功率强波动性对电力系统的影响.
WANG Yubo, HAO Ling, XU Fei, et al. Pattern recognition and ultra-short-term probabilistic forecasting of power fluctuating in aggregated distributed photovoltaics clusters[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1334-1343.
[10]
李浩茹, 丁保迪, 季宇, 等. 考虑光伏出力间歇性的微电网故障辨识方法[J]. 电力建设, 2020, 41(9): 76-85.
摘要
在光伏高比例接入的孤岛微电网中,太阳辐照度变化将导致光伏出力明显波动,继而影响微电网线路故障电流变化趋势。对于不同辐照度光伏出力,如何准确完成微电网故障辨识是微电网故障保护研究面临的一个重要问题。针对这一问题,首先建立了含有光伏发电的典型微网模型,分析了孤岛模式下太阳辐照度变化对网内故障电流的影响;然后利用快速小波能量熵(wavelet energy entropy,WEE)算法提取线路故障电流的暂态特征,继而选取简洁清晰的暂态特征并构建故障综合样本集;最后,利用典型故障样本集对极限学习机进行训练,形成一种新的考虑光伏出力间歇性的微网故障辨识方法。算例仿真结果表明所提方法既能精确提取不同辐照度下微网故障的暂态特征,又可准确地实现故障辨识,为微电网故障分析和保护提供了技术支持。
LI Haoru, DING Baodi, JI Yu, et al. A fault identification method for microgrid considering photovoltaic power intermittency[J]. Electric Power Construction, 2020, 41(9): 76-85.

In the islanded microgrid integrated with high proportion of photovoltaic power, the change of solar irradiance will lead to obvious photovoltaic power fluctuation, and then affect the trend of fault current of lines in microgrid. For the photovoltaic power with different irradiance, how to accurately identify the microgrid fault is important for microgrid protection. To this issue, a typical microgrid model with photovoltaic power generation is firstly established in this paper, and the influence of solar irradiance variation on the fault current in the islanded microgrid mode is analyzed. Then, the fast wavelet energy entropy (WEE) algorithm is used to extract the transient characteristics of fault current, and the concise transient characteristics are selected to construct the fault comprehensive sample set. Finally, considering photovoltaic power intermittence, this paper forms a new microgrid fault identification method by training Kernel-based extreme learning machine with typical fault sample set. The simulation result shows that the proposed method can not only accurately extract the transient characteristics of microgrid fault under different irradiance, but also accurately identify the fault, which provides technical support for the fault analysis and protection of microgrid.

[11]
赵宇洋, 徐慧慧, 田云飞, 等. 基于融合注意力机制自编码器的配网光伏逆变器故障检测[J]. 智慧电力, 2024, 52(11): 1-7.
ZHAO Yuyang, XU Huihui, TIAN Yunfei, et al. Fault detection in grid-connected photovoltaic inverters using an autoencoder integrated with attention mechanism[J]. Smart Power, 2024, 52(11): 1-7.
[12]
单英浩, 付青, 耿炫, 等. 基于改进BP-SVM-ELM与粒子化SOM-LSF的微电网光伏发电组合预测方法[J]. 中国电机工程学报, 2016, 36(12): 3334-3342.
SHAN Yinghao, FU Qing, GENG Xuan, et al. Combined forecasting of photovoltaic power generation in microgrid based on the improved BP-SVM-ELM and SOM-LSF with particlization[J]. Proceedings of the CSEE, 2016, 36(12): 3334-3342.
[13]
ZHOU H, YANG F, WU J, et al. Comprehensive evaluation methods for photovoltaic output anomalies based on weather classification[J]. Renewable Energy, 2024, 231: 120908.
[14]
颜勤, 余国翔. 光储充建一体站微电网研究综述[J]. 电力科学与技术学报, 2024, 39(1): 1-12.
YAN Qin, YU Guoxiang. Research review on microgrid of integrated photovoltaic-energy storage-charging station[J]. Journal of Electric Power Science and Technology, 2024, 39(1): 1-12.
[15]
龚莺飞, 鲁宗相, 乔颖, 等. 基于Copula理论的光伏功率高比例异常数据机器识别算法[J]. 电力系统自动化, 2016, 40(9): 16-22, 55.
GONG Yingfei, LU Zongxiang, QIAO Ying, et al. Copula theory based machine identification algorithm of high proportion of outliers in photovoltaic power data[J]. Automation of Electric Power Systems, 2016, 40(9): 16-22, 55.
[16]
叶林, 崔宝丹, 李卓, 等. 光伏电站高比例异常运行数据组合识别方法[J]. 电力系统自动化, 2022, 46(20): 74-82.
YE Lin, CUI Baodan, LI Zhuo, et al. Combined identification method for high proportion of abnormal operation data in photovoltaic power station[J]. Automation of Electric Power Systems, 2022, 46(20): 74-82.
[17]
郝颖, 冬雷, 王丽婕, 等. 基于数学形态学去噪的光伏发电限电异常数据识别算法[J]. 中国电机工程学报, 2022, 42(21): 7843-7855.
HAO Ying, DONG Lei, WANG Lijie, et al. An abnormal data recognition algorithm based on mathematical morphology denoising theory for PV power generation[J]. Proceedings of the CSEE, 2022, 42(21): 7843-7855.
[18]
刘洋, 于海东, 刘文彬, 等. 基于DTW-两阶四分位的分布式光伏发电异常数据辨识[J]. 热力发电, 2024, 53(7): 34-44.
LIU Yang, YU Haidong, LIU Wenbin, et al. Abnormal data identification for distributed photovoltaic generation based on DTW and two-stage quartile[J]. Thermal Power Generation, 2024, 53(7): 34-44.
[19]
WANG H, ZHANG N, DU E S, et al. An adaptive identification method of abnormal data in wind and solar power stations[J]. Renewable Energy, 2023, 208: 76-93.
[20]
分布式光伏发电系统集中运维技术规范: GB/T 38946—2020[S]. 北京: 中国标准出版社, 2020.
Specification of centralized operation and maintenance for distributed photovoltaic power system: GB/T 38946—2020[S]. Beijing: Standards Press of China, 2020.
[21]
王建学, 张耀, 万筱钟. 光伏出力特性指标体系和分类典型曲线研究[J]. 电力需求侧管理, 2017, 19(5): 8-12.
WANG Jianxue, ZHANG Yao, WAN Xiaozhong. Research of index system and typical curves on photovoltaic power output characteristics[J]. Power Demand Side Management, 2017, 19(5): 8-12.
[22]
汪繁荣, 梅涛, 卢璐. 基于相似日聚类和VMD-LTWDBO-BiLSTM的短期光伏功率预测[J]. 智慧电力, 2024, 52(10): 56-63, 111.
WANG Fanrong, MEI Tao, LU Lu. Short-term PV power prediction based on similar day clustering with VMD-LTWDBO-BiLSTM[J]. Smart Power, 2024, 52(10): 56-63, 111.
[23]
江卓翰, 周胜瑜, 何禹清, 等. 基于K-I-ELM多模型集成的分布式光伏出力短期预测方法[J]. 电力科学与技术学报, 2024, 39(4): 146-152.
JIANG Zhuohan, ZHOU Shengyu, HE Yuqing, et al. Short-term prediction method of distributed PV output power based on K-I-ELM multi-model integration[J]. Journal of Electric Power Science and Technology, 2024, 39(4): 146-152.
[24]
刘迪, 吴林林, 巩宇, 等. 基于滚动采样马尔可夫链模型的光伏时序功率模拟研究[J]. 电力科学与技术学报, 2024, 39(3): 207-216.
LIU Di, WU Linlin, GONG Yu, et al. Study on time series power simulation of photovoltaic output based on rolling sampling Markov chain model[J]. Journal of Electric Power Science and Technology, 2024, 39(3): 207-216.
[25]
李楠, 刘佳佳, 赖心怡, 等. 基于时间序列神经分层插值模型的光伏功率超短期多步预测[J]. 智慧电力, 2024, 52(4): 69-77.
LI Nan, LIU Jiajia, LAI Xinyi, et al. Ultra-short-term multi-step forecasting of photovoltaic power based on time series neural hierarchical interpolation model[J]. Smart Power, 2024, 52(4): 69-77.
[26]
程雄, 戴鹏, 钟浩, 等. 考虑综合相似性度量的光伏典型出力场景聚类方法[J]. 中国电机工程学报, 2024, 44(21): 8462-8475.
CHENG Xiong, DAI Peng, ZHONG Hao, et al. Photovoltaic typical output scenario clustering method considering comprehensive similarity measurement[J]. Proceedings of the CSEE, 2024, 44(21): 8462-8475.
[27]
刘锦宁, 吴裕宙, 苏盛, 等. 基于计量数据挖掘分析的分布式光伏系统故障感知[J]. 南方电网技术, 2024, 18(12): 117-126.
LIU Jinning, WU Yuzhou, SU Sheng, et al. Distributed photovoltaic system anomaly detection based on metering data mining analysis[J]. Southern Power System Technology, 2024, 18(12): 117-126.
[28]
金璐. 云模型在时间序列预测中的应用研究[D]. 成都: 电子科技大学, 2014.
JIN Lu. Application research of the cloud model in time series prediction[D]. Chengdu: University of Electronic Science and Technology of China, 2014.

基金

国家自然科学基金项目(U2166206)

编辑: 张小飞
PDF(2926 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/