综合能源系统耦合性研究综述:定性分析与量化应用

宋晨辉, 李顺宇, 肖峻, 贺波, 黄思卓, 贾宏杰

电力建设 ›› 2025, Vol. 46 ›› Issue (12) : 44-56.

PDF(1418 KB)
PDF(1418 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (12) : 44-56. DOI: 10.12204/j.issn.1000-7229.2025.12.005
规划建设

综合能源系统耦合性研究综述:定性分析与量化应用

作者信息 +

Review of Coupling Characteristics in Integrated Energy System: Qualitative Analysis and Quantitative Applications

Author information +
文章历史 +

摘要

【目的】 “耦合”广泛存在于自然界,是综合能源系统(integrated energy system,IES)的基本物理属性与首要特征。明确IES耦合机理,能充分发挥其多能互补优势,挖掘其作为“虚拟储能”的新能源消纳潜力。目前IES耦合研究主要针对能量耦合形式定性分析,存在“不全面”“未量化”“难分析”等问题。 【方法】 文章围绕IES耦合性,从“定性”和“定量”两个维度,对IES耦合性进行了综述。首先,由广泛存在的耦合现象出发,提出了IES耦合的基本概念。其次,针对IES耦合对规划与运行的影响,梳理了异质能源耦合定性研究的现状。接着,针对IES耦合定性分析的局限,从指标与方法两个维度,总结了当前IES耦合的量化研究进展,并从时间、空间与能量品位三个维度展开,探讨了耦合量化应用的潜力。 【结果】 最后,围绕建模、机理、应用,阐述了IES耦合量化的未来研究挑战。 【结论】 异质能源耦合涉及多时间尺度分析、源网荷储协同、能量梯次利用等IES研究中的多个关键本质问题,明确耦合特性将有助于明晰IES运行的本质规律,有助于形成全新的理论成果与应用方法。

Abstract

[Objective] "Coupling" exists widely in nature and is the fundamental physical attribute and primary characteristic of the integrated energy system (IES). Clarifying the coupling mechanism of IES can fully leverage its multi-energy complementary advantages and tap into its potential as a "virtual energy storage" for new energy consumption. Current coupling research mainly focuses on qualitative analysis of energy coupling forms,which suffers from issues such as "incompleteness," "unquantified," and "difficult to analyze." [Methods] This paper reviews the analysis and application of IES coupling from both "qualitative" and "quantitative" dimensions. Firstly,starting from the widely existing coupling phenomena,the basic concept of IES coupling is proposed. Secondly,the current status of qualitative research on heterogeneous energy coupling in terms of its impact on planning and operation is sorted out. Then,in view of the limitations of qualitative analysis of IES coupling,the progress of current quantitative research on IES coupling is summarized from the dimensions of indicators and methods,and the potential of quantitative application of coupling is explored from the three dimensions of time,space and energy grade. [Results] Finally,the future research challenges of IES coupling quantification are expounded around modeling,mechanism and application. [Conclusions] Heterogeneous energy coupling involves multiple key essential issues in IES research,such as multi-time scale analysis,source-grid-load-storage coordination,and energy cascade utilization. Clarifying the coupling characteristics will help clarify the essential laws of IES operation and contribute to the formation of new theoretical achievements and application methods.

关键词

综合能源系统(IES) / 异质能源耦合 / 定性分析 / 量化应用 / 规划运行 / 机理分析

Key words

integrated energy system(IES) / heterogeneous energy coupling / qualitative analysis / quantitative application / planning and operation / mechanism analysis

引用本文

导出引用
宋晨辉, 李顺宇, 肖峻, . 综合能源系统耦合性研究综述:定性分析与量化应用[J]. 电力建设. 2025, 46(12): 44-56 https://doi.org/10.12204/j.issn.1000-7229.2025.12.005
SONG Chenhui, LI Shunyu, XIAO Jun, et al. Review of Coupling Characteristics in Integrated Energy System: Qualitative Analysis and Quantitative Applications[J]. Electric Power Construction. 2025, 46(12): 44-56 https://doi.org/10.12204/j.issn.1000-7229.2025.12.005
中图分类号: TM715   

参考文献

[1]
国家电网公司. 国家电网公司发布“碳达峰碳中和”行动方案[N]. 国家电网报, 2021-03-02(1).
[2]
康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11.
[3]
宋晨辉, 冯健, 杨东升, 等. 考虑系统耦合性的综合能源协同优化[J]. 电力系统自动化, 2018, 42(10): 38-45, 86.
SONG Chenhui, FENG Jian, YANG Dongsheng, et al. Collaborative optimization of integrated energy considering system coupling[J]. Automation of Electric Power Systems, 2018, 42(10): 38-45, 86.
[4]
物理学名词审定委员会. 物理学名词[M]. 3版. 北京: 科学出版社, 2019.
[5]
吴飞. 什么是耦合[N]. 浙江日报, 2021-11-01(00006).
[6]
员盼锋, 徐舒涵, 丹慧杰, 等. 基于火电厂源侧的综合能源系统集成及优化配置研究[J]. 动力工程学报, 2024, 44(4): 650-657.
摘要
提出一种基于火电厂源侧的综合能源系统构型,该系统以火电机组为核心,在系统的输入端耦合生物质气化、垃圾气化、干化污泥等多种可再生能源输入,在输出端供应冷、热、汽、电等多种能源产品,并将电厂热平衡模型与可再生能源模型及制冷制热系统模型耦合,建立以效率和经济性为目标的优化配置方法,采用输入端优化与输出端优化2类优化逻辑,从系统输入端、输出端来分析火电厂源侧综合能源系统主要运行参数对经济性和效率优化目标的影响。结果表明:综合能源改造对现阶段火电厂具有积极意义。
YUN Panfeng, XU Shuhan, DAN Huijie, et al. Integration and optimal allocation of integrated energy system based on source side of thermal power plant[J]. Journal of Chinese Society of Power Engineering, 2024, 44(4): 650-657.
An integrated energy system based on source side of thermal power plant was proposed,which takes thermal power units as the core, couples multiple renewable energy inputs such as biomass gasification, garbage gasification and dried sludge at the input end of the system, and supplies multiple energy products such as colding, heating, steam and electricity at the output end. By coupling the thermal balance model of the power plant with the renewable energy model and cooling/heating system model, an optimization configuration method was established with efficiency and economy as the objectives. The following two types of optimization logics, input optimization and output optimization, were adopted to analyze the impact of the main operating parameters of the integrated energy system on the economy and efficiency optimization goals from the input and output ends of the system. Results show that integrated energy transformation has positive significance for current thermal power plants.
[7]
徐敏, 刘早富, 康哲. 计及光热电站和“源荷” 双侧博弈的综合能源系统优化运行[J]. 电工电能新技术, 2022, 41(9): 27-39.
摘要
为响应减碳减排计划、提高新能源渗透率同时缓解传统能源系统出现的弃风弃光以及污染排放现象,本文引入光热电站联合风电、光伏等新型能源生产设备,建立了计及光热电站的综合能源系统主从博弈模型,同时考虑风光出力不确定性以及用户侧的综合需求响应问题。运用NSGA-Ⅱ嵌套智能求解器对该模型进行求解。分析光热聚合商、多能运营商和用户三方的利益均衡,研究对比三个不同的场景,通过算例验证该模型的可行性以及方法的有效性。结果表明含光热电站的综合能源系统结合主从博弈方法在有效地提升用户侧用能满意度的同时提高了系统的经济效益。
XU Min, LIU Zaofu, KANG Zhe. Optimal operation of integrated energy system considering bilateral game between solar thermal power station and “source load”[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(9): 27-39.
In response to the carbon reduction and emission reduction plan, and to improve the penetration of new energy while alleviating problems of abandonment of wind and light and pollution emissions in the traditional energy system, this paper introduces solar thermal power station combined with wind power, photovoltaic and other new energy production equipment, and establishes a master-slave game model of comprehensive energy system considering solar thermal power station. At the same time, the uncertainty of wind and solar output and the comprehensive demand response on the user side are considered. NSGA-Ⅱ nested intelligent solver is used to solve the model. The balance of interests among photothermal aggregators, multi-functional operators and users is analyzed, three different scenarios are studied and compared, and the feasibility of the model and the effectiveness of the method are verified through an example. The results show that the comprehensive energy system with CSP power station combined with the master-slave game method can effectively improve the energy consumption satisfaction of the user side and improve the economic benefits of the system.
[8]
曹俊波, 晁岱旭, 刘爽, 等. 考虑电、气、热耦合性及随机性的IES-CCHP综合收益模型[J]. 电力系统及其自动化学报, 2018, 30(6): 16-22.
CAO Junbo, CHAO Daixu, LIU Shuang, et al. Comprehensive profit model of IES-CCHP considering the coupling and randomness of power, gas and heat[J]. Proceedings of the CSU-EPSA, 2018, 30(6): 16-22.
[9]
董今妮, 孙宏斌, 郭庆来, 等. 面向能源互联网的电-气耦合网络状态估计技术[J]. 电网技术, 2018, 42(2): 400-408.
DONG Jinni, SUN Hongbin, GUO Qinglai, et al. State estimation of combined electric-gas networks for energy internet[J]. Power System Technology, 2018, 42(2): 400-408.
[10]
吕忠麟, 顾洁, 孟璐. 基于耦合特征与多任务学习的综合能源系统短期负荷预测[J]. 电力系统自动化, 2022, 46(11): 58-66.
LYU Zhonglin, GU Jie, MENG Lu. Short-term load forecasting for integrated energy system based on coupling features and multi-task learning[J]. Automation of Electric Power Systems, 2022, 46(11): 58-66.
[11]
史文瑜, 郝晨晨, 杨德昌, 等. 基于时间序列大模型综合能源系统多元负荷预测[J/OL]. 电网技术, (2025-07-17)[2025-07-24]. https://doi.org/10.13335/j.1000-3673.
SHI Wenyu, HAO Chenchen, YANG Dechang, et al. Integrated energy system load forecasting based on the time series large model[J/OL]. Power System Technology, (2025-07-17) [2025-07-24]. https://doi.org/10.13335/j.1000-3673.
[12]
沈运帷, 徐凯, 林顺富, 等. 考虑广义储能参与的多园区综合能源系统低碳优化运行策略[J]. 电力自动化设备, 2024, 44(11): 41-51.
SHEN Yunwei, XU Kai, LIN Shunfu, et al. Low-carbon optimal operation strategy of multi-park integrated energy system considering generalized energy storage participation[J]. Electric Power Automation Equipment, 2024, 44(11): 41-51.
[13]
刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543.
DIAO Hanbin, LI Peiqiang, WANG Jifei, et al. Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543.
[14]
张磊, 吴红斌, 何叶, 等. 基于深度强化学习的氢能综合能源系统优化调度方法[J]. 电力系统自动化, 2024, 48(16): 132-141.
ZHANG Lei, WU Hongbin, HE Ye, et al. Optimal scheduling method for integrated energy systems with hydrogen based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2024, 48(16): 132-141.
[15]
李珂, 邵成成, 王雅楠, 等. 考虑电-气-交通耦合的城市综合能源系统规划[J]. 中国电机工程学报, 2023, 43(6): 2263-2273.
LI Ke, SHAO Chengcheng, WANG Yanan, et al. Optimal planning of urban integrated energy systems considering electricity-gas-transportation interactions[J]. Proceedings of the CSEE, 2023, 43(6): 2263-2273.
[16]
刘自发, 周翰泽. 计及多主体能源交易的综合能源系统规划方法研究[J]. 电网技术, 2022, 46(9): 3524-3536.
LIU Zifa, ZHOU Hanze. Research on comprehensive energy system planning method considering multi agent energy transaction[J]. Power System Technology, 2022, 46(9): 3524-3536.
[17]
白宏坤, 尹硕, 李虎军, 等. 计及碳交易成本的多能源站综合能源系统规划[J]. 电力科学与技术学报, 2019, 34(1): 11-19.
BAI Hongkun, YIN Shuo, LI Hujun, et al. Optimal planning of multi-energy stations considering carbon-trading cost[J]. Journal of Electric Power Science and Technology, 2019, 34(1): 11-19.
[18]
杨志豪, 苗世洪, 涂青宇, 等. 考虑多品位能源互补的综合能源系统分级规划策略[J]. 高电压技术, 2024, 50(4): 1457-1467.
YANG Zhihao, MIAO Shihong, TU Qingyu, et al. Hierarchical planning strategy for integrated energy system considering the complementation of multi-grade energy[J]. High Voltage Engineering, 2024, 50(4): 1457-1467.
[19]
陆海, 张浩, 陈晓云, 等. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99.
LU Hai, ZHANG Hao, CHEN Xiaoyun, et al. Collaborative planning method for multi-energy networks based on double-layer game theory[J]. Electric Power, 2025, 58(1): 93-99.
[20]
米阳, 孔令飞, 王育飞, 等. 面向配电网的多综合能源系统容量规划和能源交易优化[J]. 电力自动化设备, 2025, 45(9): 38-45, 87.
MI Yang, KONG Lingfei, WANG Yufei, et al. Capacity planning and energy trading optimization of multiple integrated energy systems oriented to distribution network[J]. Electric Power Automation Equipment, 2025, 45(9): 38-45, 87.
[21]
申鸿帅, 吕家君, 李更丰, 等. 考虑热储灵活配置与热网水力热力特性的电热综合能源系统优化规划[J]. 电力自动化设备, 2024, 44(7): 214-222, 254.
SHEN Hongshuai, Jiajun, LI Gengfeng, et al. Optimal planning of integrated electricity and heating system considering flexible configuration of thermal storage and hydraulic-thermal characteristics of thermal network[J]. Electric Power Automation Equipment, 2024, 44(7): 214-222, 254.
[22]
黄伟, 刘文彬. 基于多能互补的园区综合能源站-网协同优化规划[J]. 电力系统自动化, 2020, 44(23): 20-28.
HUANG Wei, LIU Wenbin. Multi-energy complementary based coordinated optimal planning of park integrated energy station-network[J]. Automation of Electric Power Systems, 2020, 44(23): 20-28.
[23]
刘洪, 郑楠, 葛少云, 等. 考虑负荷特性互补的综合能源系统站网协同规划[J]. 中国电机工程学报, 2021, 41(1): 52-64, 397.
LIU Hong, ZHENG Nan, GE Shaoyun, et al. Station and network coordinated planning of integrated energy systems considering complementation of load characteristic[J]. Proceedings of the CSEE, 2021, 41(1): 52-64, 397.
[24]
YAN R J, WANG J J, ZHU S T, et al. Novel planning methodology for energy stations and networks in regional integrated energy systems[J]. Energy Conversion and Management, 2020, 205: 112441.
[25]
陈湘元, 吴公平, 龙卓, 等. 考虑源荷不确定性及用户侧需求响应的综合能源系统多时间尺度优化调度[J]. 电力科学与技术学报, 2024, 39(3): 217-227.
CHEN Xiangyuan, WU Gongping, LONG Zhuo, et al. Multi-time scale optimal dispatch of integrated energy systems considering source-load uncertainty and user-side demand response[J]. Journal of Electric Power Science and Technology, 2024, 39(3): 217-227.
[26]
江训谱, 包哲静, 于淼, 等. 考虑源荷不确定性的园区综合能源系统鲁棒多阶段规划[J]. 电力建设, 2025, 46(4): 99-112.
JIANG Xunpu, BAO Zhejing, YU Miao, et al. Robust multi-stage planning of park-level integrated energy system considering source-load uncertainties[J]. Electric Power Construction, 2025, 46(4): 99-112.
[27]
SU Z E, ZHENG G Q, WANG G D, et al. Multi-objective optimal planning study of integrated regional energy system considering source-load forecasting uncertainty[J]. Energy, 2025, 319: 134861.
[28]
黄元平, 苏睿, 何国彬, 等. 考虑电-氢混合储能的电-热综合能源系统最优规划[J]. 电力系统保护与控制, 2025, 53(13): 152-162.
HUANG Yuanping, SU Rui, HE Guobin, et al. Optimal planning of electric-heat integrated energy systems considering electric-hydrogen hybrid energy storage[J]. Power System Protection and Control, 2025, 53(13): 152-162.
[29]
陈乾, 张沈习, 程浩忠, 等. 计及热网蓄热特性的多区域综合能源系统多元储能规划[J]. 中国电机工程学报, 2023, 43(15): 5890-5903.
CHEN Qian, ZHANG Shenxi, CHENG Haozhong, et al. Multiple energy storage planning of multi-district integrated energy system considering heat storage characteristics of heat network[J]. Proceedings of the CSEE, 2023, 43(15): 5890-5903.
[30]
方乐, 刘成奎, 陈晓弢, 等. 含光热复合压缩空气储能的分布式综合能源系统容量规划方法[J]. 电工技术学报, 2022, 37(23): 5933-5943.
FANG Le, LIU Chengkui, CHEN Xiaotao, et al. Capacity planning method of distributed integrated energy system with solar thermal composite compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5933-5943.
[31]
邵成成, 王锡凡, 王秀丽, 等. 多能源系统分析规划初探[J]. 中国电机工程学报, 2016, 36(14): 3817-3829.
SHAO Chengcheng, WANG Xifan, WANG Xiuli, et al. Probe into analysis and planning of multi-energy systems[J]. Proceedings of the CSEE, 2016, 36(14): 3817-3829.
[32]
包铭磊, 杨阳, 丁一, 等. 考虑天然气系统影响的电力系统连锁故障评估[J]. 电网技术, 2019, 43(1): 32-40.
BAO Minglei, YANG Yang, DING Yi, et al. Assessment of cascading failures in power system considering effects of natural gas system[J]. Power System Technology, 2019, 43(1): 32-40.
[33]
张安安, 李静, 林冬, 等. 考虑天然气管网极限风险影响的电-气耦合系统连锁故障模型[J]. 中国电机工程学报, 2021, 41(21): 7275-7285.
ZHANG An’an, LI Jing, LIN Dong, et al. A cascading failure model of electricity-gas coupling system considering the influence of limit risk of natural gas pipeline network[J]. Proceedings of the CSEE, 2021, 41(21): 7275-7285.
[34]
郇嘉嘉, 隋宇, 张小辉. 综合能源系统级联失效及故障连锁反应分析方法[J]. 电力建设, 2019, 40(8): 84-92.
摘要
随着能源互联网及综合能源系统建设的不断深入,不同能源系统之间的关联耦合特性进一步加深。现阶段综合能源系统研究中对故障在综合能源系统内的传播影响分析不够深入,且未考虑不同能源子系统的故障连锁。针对此问题提出综合能源系统级联失效及故障连锁反应分析方法。首先,以综合能源系统为研究对象,从宏观层面分析了综合能源系统的故障连锁失效机理,同时分别对天然气系统、电力系统及热力系统的故障影响进行了细致分析;其次,分别从拓扑完整性和失效级联影响度2个维度提出了综合能源系统连锁故障影响评价指标,并梳理了连锁故障影响的分析流程;最后,通过构建综合能源系统的测试算例,验证所提方法的有效性与实用性。
HUAN Jiajia, SUI Yu, ZHANG Xiaohui. Analysis method for cascade failure and fault chain reaction of integrated energy system[J]. Electric Power Construction, 2019, 40(8): 84-92.
With the deepening of the construction of energy internet and integrated energy system, the coupling characteristics between different energy systems have been further deepened. In view of the fact that the influence of fault propagation in the integrated energy system have not been deeply analyzed at this stage, and the problem of fault linkage of different energy subsystems have not been taken into account, this paper puts forward the analysis method for cascade failure and fault chain reaction of integrated energy system. Firstly, taking integrated energy system as the research object,  the fault chain failure mechanism of integrated energy system is analyzed from the macro level, and the fault effects of natural gas system, power system and heat system are analyzed in detail. Secondly, the evaluation index of chain fault reaction of integrated energy system is put forward from two dimensions of topological integrity and failure cascade loudness, and the analysis flow of chain fault influence is combed. Finally, the effectiveness and practicability of the proposed method are verified by a test example of an integrated energy system.
[35]
杨丽君, 王晨, 赵优, 等. 基于双层优化模型的电-气耦合综合能源故障恢复策略[J]. 电网技术, 2020, 44(11): 4264-4273.
YANG Lijun, WANG Chen, ZHAO You, et al. Electric-gas coupled integrated energy fault recovery strategy based on bi-level optimization model[J]. Power System Technology, 2020, 44(11): 4264-4273.
[36]
贾伯岩, 李丹, 李雄宇, 等. 电-气综合能源系统多故障两阶段恢复策略[J]. 电力系统保护与控制, 2022, 50(9): 113-123.
JIA Boyan, LI Dan, LI Xiongyu, et al. Two-stage restoration strategy for multi fault of an electric gas integrated energy system[J]. Power System Protection and Control, 2022, 50(9): 113-123.
[37]
李尚宇, 秦昱, 田巍巍, 等. 计及电-气-热综合能源的有源配电网故障恢复[J]. 供用电, 2024, 41(3): 51-60.
LI Shangyu, QIN Yu, TIAN Weiwei, et al. Active distribution network service restoration with integrated electricity-gas-heat energy[J]. Distribution & Utilization, 2024, 41(3): 51-60.
[38]
黄悦华, 刘兴韬, 张磊, 等. 基于C藤Copula及条件风险价值的综合能源系统灵活爬坡优化调度[J]. 中国电机工程学报, 2023, 43(24): 9411-9423.
HUANG Yuehua, LIU Xingtao, ZHANG Lei, et al. Flexible ramping optimal scheduling of integrated energy system based on C-vine copula and conditional value at risk[J]. Proceedings of the CSEE, 2023, 43(24): 9411-9423.
[39]
郑丁园, 崔双喜, 樊小朝, 等. 计及风电不确定性的综合能源系统多目标分布鲁棒优化调度[J]. 智慧电力, 2024, 52(8): 1-8, 18.
ZHENG Dingyuan, CUI Shuangxi, FAN Xiaochao, et al. Multi-objective distributionally robust optimization scheduling for integrated energy system considering wind power uncertainty[J]. Smart Power, 2024, 52(8): 1-8, 18.
[40]
易纯, 肖辉, 吴公平, 等. 含电、冷、热、气的区域综合能源系统优化运行[J]. 电力科学与技术学报, 2024, 39(4): 215-221.
YI Chun, XIAO Hui, WU Gongping, et al. Optimal operation of regional integrated energy system including electricity, cooling, heating and gas[J]. Journal of Electric Power Science and Technology, 2024, 39(4): 215-221.
[41]
吴嘉豪, 曾成碧, 苗虹. 计及子区域间能量交换的多区域综合能源系统协调经济调度[J]. 电力建设, 2019, 40(11): 39-47.
摘要
在传统模式下,多区域综合能源系统(integrated energy system,IES)由于地理位置分散,往往都是独立运行,彼此间缺乏协调,难免存在资源配置不合理的问题,这不利于各区域的经济调度。文章首先提出一种多区域综合能源系统协调经济调度模型,其不仅能实现各自区域内的电热功率平衡,还能实现不同区域间的电热互补,然后采用分布式优化方法对模型进行求解。通过对比协调模式与传统的非协调模式,仿真结果表明,在该协调模式下,不同区域通过电能和热能交换,能够合理分配能源,实现综合能源系统的经济运行。从能源总需求量、储能设备调度结果和各区域间能源集线器(energy hub,EH)的能量交换情况3个方面验证了所构建模型的有效性。
WU Jiahao, ZENG Chengbi, MIAO Hong. Coordinated economic scheduling for multi-regional integrated energy system considering energy exchange between sub-regions[J]. Electric Power Construction, 2019, 40(11): 39-47.
In traditional mode, multi-regional integrated energy system often operated individually due to geographical dispersion and lacks coordination between sub-regions, which causes an unreasonable resource allocation inevitably and is not conducive to economic scheduling of each sub-region. Firstly, a cooperative economic scheduling model for multi-region integrated energy system is proposed, which not only meets the energy demand of each sub-region, but also realizes the complementation of electric power and thermal power between different sub-regions. Secondly, a distributed optimization is used to solve the model. Finally, comparing the coordinated mode with the traditional non-coordinated mode, the simulation results show that, in the coordinated mode, different regions could distribute energy reasonably by exchanging electric power and thermal power and realize the economic operation of integrated energy system. The validity of the model is verified from three aspects: total energy demand, energy storage scheduling results and energy exchange of energy hubs between different regions.
[42]
宋晓通, 孙艺, 刘欣博, 等. 计及能量互济的多区域综合能源系统多目标双层优化[J]. 高电压技术, 2024, 50(4): 1426-1435.
SONG Xiaotong, SUN Yi, LIU Xinbo, et al. Multi-objective bi-level programming strategy of integrated energy system considering regional interconnection[J]. High Voltage Engineering, 2024, 50(4): 1426-1435.
[43]
杨海柱, 李梦龙, 江昭阳, 等. 考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J]. 电力系统保护与控制, 2020, 48(10): 30-37.
YANG Haizhu, LI Menglong, JIANG Zhaoyang, et al. Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J]. Power System Protection and Control, 2020, 48(10): 30-37.
[44]
刘钊, 郭子豪, 申安, 等. 考虑冷热电灵活性负荷需求响应的区域综合能源系统运行优化[J]. 南方能源建设, 2024, 11(6): 153-163.
LIU Zhao, GUO Zihao, SHEN An, et al. Optimization of regional integrated energy system operation considering flexible load demand response for cooling, heating and power[J]. Southern Energy Construction, 2024, 11(6): 153-163.
[45]
赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-589.
ZHAO Haipeng, MIAO Shihong, LI Chao, et al. Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2): 573-589.
[46]
张晓, 陈胜, 卫志农, 等. 计及广义储能的园区综合能源系统低碳规划[J]. 电力自动化设备, 2024, 44(3): 40-48.
ZHANG Xiao, CHEN Sheng, WEI Zhinong, et al. Low-carbon planning of park-level integrated energy system considering generalized energy storage[J]. Electric Power Automation Equipment, 2024, 44(3): 40-48.
[47]
高明非, 韩中合, 赵斌, 等. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216.
GAO Mingfei, HAN Zhonghe, ZHAO Bin, et al. Coordinated optimization and operational strategy for multi-type energy storage in regional integrated energy systems[J]. Electric Power, 2024, 57(9): 205-216.
[48]
CHEN H Y, YANG B, WANG Z G, et al. Collaborative optimization of regional integrated energy system with multiple energy storage[J]. Applied Thermal Engineering, 2025, 276: 126969.
[49]
韩祯祥, 曹一家. 电力系统的安全性及防治措施[J]. 电网技术, 2004, 28(9): 1-6.
HAN Zhenxiang, CAO Yijia. Power system security and its prevention[J]. Power System Technology, 2004, 28(9): 1-6.
[50]
陈厚合, 邵俊岩, 姜涛, 等. 基于多能流解耦算法的综合能源系统N-1静态安全分析[J]. 电力系统自动化, 2019, 43(17): 20-27, 131.
CHEN Houhe, SHAO Junyan, JIANG Tao, et al. Static N-1 security analysis for integrated energy system based on decoupled multi-energy flow calculation method[J]. Automation of Electric Power Systems, 2019, 43(17): 20-27, 131.
[51]
PIAO Z G, LI B, HU C B, et al. Research on the safe operation method of integrated energy system based on static safety analysis[C]//2024 IEEE 2nd International Conference on Power Science and Technology (ICPST). IEEE, 2024: 1752-1757.
[52]
于丰硕, 孙宏斌, 乔铮, 等. 电-气耦合综合能源系统准动态安全评估[J]. 电网技术, 2023, 47(9): 3681-3692.
YU Fengshuo, SUN Hongbin, QIAO Zheng, et al. Quasi-dynamic security assessment of integrated electricity and gas system[J]. Power System Technology, 2023, 47(9): 3681-3692.
[53]
梅建春, 卫志农, 张勇, 等. 考虑关键故障筛选的电-气互联综合能源系统混合控制方法[J]. 电网技术, 2019, 43(1): 23-33.
MEI Jianchun, WEI Zhinong, ZHANG Yong, et al. Hybrid control of integrated power and gas energy systems based on significant contingency screening[J]. Power System Technology, 2019, 43(1): 23-33.
[54]
XIAO J, SUN G, SONG C H, et al. Security monitoring, early warning and alarm Method based on security boundary for regional integrated energy system[J]. Applied Energy, 2025, 379: 124709.
[55]
张冠宇, 付炜, 陈晨, 等. 面向电-气-热综合能源系统的恢复力研究现状与展望[J]. 智慧电力, 2023, 51(1): 69-77.
ZHANG Guanyu, FU Wei, CHEN Chen, et al. Status and prospects of resilience research for electric-gas-thermal integrated energy system[J]. Smart Power, 2023, 51(1): 69-77.
[56]
陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22.
CHEN Lei, DENG Xinyi, CHEN Hongkun, et al. Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22.
[57]
何雨霏, 王伟, 熊小伏, 等. 提升电-气互联能源系统弹性的应急资源灾前协同调度策略[J]. 电力系统自动化, 2023, 47(14): 21-32.
HE Yufei, WANG Wei, XIONG Xiaofu, et al. Pre-disaster collaborative dispatch strategy of emergency resources for resilience enhancement of electricity-gas interconnected energy system[J]. Automation of Electric Power Systems, 2023, 47(14): 21-32.
[58]
许桉晨, 崔双喜, 邓顺黎. 基于时间序列分析与预测的电-气互联综合能源系统运行风险评估[J]. 智慧电力, 2024, 52(11): 40-47.
XU Anchen, CUI Shuangxi, DENG Shunli. Operational risk assessment of electricity-gas interconnected integrated energy system based on time series analysis and prediction[J]. Smart Power, 2024, 52(11): 40-47.
[59]
李欣, 王若宇, 赵乔, 等. 极端高温天气下电-气综合能源系统两阶段预防-恢复策略[J/OL]. 电力系统及其自动化学报, 2025(2025-08-01)[2025-08-20]. https://doi.org/10.19635/j.cnki.csu-epsa.001688.
LI Xin, WANG Ruoyu, ZHAO Qiao, et al. Two stage prevention recovery strategy for electricity gas integrated energy system under extreme high temperature weather[J/OL]. Proceedings of the CSU-EPSA, 2025 (2025-08-01) [2025-08-20]. https://doi.org/10.19635/j.cnki.csu-epsa.001688.
[60]
WU J Q, GU J, LIU S Q, et al. Strategies for improving resilience of regional integrated energy systems in the prevention-resistance phase of integration[J]. Protection and Control of Modern Power Systems, 2023, 8: 29.
The construction of integrated energy systems can help improve energy efficiency and promote global energy transition. However, in recent years, the occurrence of extreme natural disasters has brought certain threats to the safe and stable operation of the integrated energy system. Thus, it is necessary to improve the ability of the integrated energy system to resist disasters, reduce disaster losses, and restore energy supply as soon as possible, i.e., improve its resilience. Considering the influence of pre-disaster prevention measures and disaster-time operational measures on system disaster resilience and the correlation between the two, this paper proposes a system hardening strategy based on three-layer robust optimization. The upper layer formulates the optimal hardening strategy of the system before the disaster event occurs, the middle layer identifies the failed elements in the worst disaster situation, while the lower layer realizes the system operational optimization by coordinating the energy storage charging and discharging plan of each subsystem. The strategy can reduce the total supply shortage of the integrated energy system and improve the flexibility of the system in the pre-disaster prevention and disaster resistance integration stages.
[61]
LIU H C, WANG C, JU P, et al. A bi-level coordinated dispatch strategy for enhancing resilience of electricity-gas system considering virtual power plants[J]. International Journal of Electrical Power & Energy Systems, 2023, 147: 108787.
[62]
唐坤霆, 周永智, 李宝聚, 等. 考虑热惯性的极端冰雪灾害下综合能源系统韧性提升[J]. 电力系统自动化, 2024, 48(21): 129-137.
TANG Kunting, ZHOU Yongzhi, LI Baoju, et al. Resilience enhancement of integrated energy systems under extreme ice and snow disasters considering thermal inertia[J]. Automation of Electric Power Systems, 2024, 48(21): 129-137.
[63]
AMIRIOUN M H, AMINIFAR F, SHAHIDEHPOUR M. Resilience-promoting proactive scheduling against hurricanes in multiple energy carrier microgrids[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2160-2168.
[64]
叶林, 屈晓旭, 马明顺, 等. 含风-光-水的多能源系统的同质化耦合模型[J]. 电网技术, 2020, 44(9): 3201-3210.
YE Lin, QU Xiaoxu, MA Mingshun, et al. Multi-energy system homogeneous coupling model considering wind-photovoltaic-hydro power generations[J]. Power System Technology, 2020, 44(9): 3201-3210.
[65]
肖峻, 李宗哲, 宋晨辉, 等. 综合能源系统能源耦合度及其对运行域的影响[J]. 电力系统自动化, 2023, 47(5): 74-83.
XIAO Jun, LI Zongzhe, SONG Chenhui, et al. Energy coupling degree of integrated energy system and its influence on operation region[J]. Automation of Electric Power Systems, 2023, 47(5): 74-83.
[66]
邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47(6): 2185-2198.
ZOU Yuhang, ZENG Aidong, HAO Sipeng, et al. Multi-time-scale optimal dispatch of integrated energy systems under stepped carbon trading mechanism[J]. Power System Technology, 2023, 47(6): 2185-2198.
[67]
赵北涛, 刘光宇, 韩东升. 考虑氢能耦合及阶梯碳交易的综合能源系统多时间尺度低碳优化调度[J]. 电力科学与技术学报, 2023, 38(3): 35-46.
ZHAO Beitao, LIU Guangyu, HAN Dongsheng. Multi-time-scale low-carbon optimal scheduling of integrated energy systems considering hydrogen energy coupling and ladder carbon trading[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 35-46.
[68]
杨冬梅, 王俊, 杜炜. 考虑源网荷储聚合交易的区域电热综合能源系统优化调度[J]. 电力建设, 2021, 42(10): 28-39.
摘要
源网荷储资源的协调利用,是推动区域电热综合能源系统(regional integrated electric and heating system,RIEHS)高效运行的重要手段。提出了一种考虑源网荷储聚合交易的RIEHS优化调度方法。首先,构建了RIEHS的调度框架,设计了考虑源网荷储聚合交易的RIEHS调度组织流程;其次,建立了RIEHS两阶段优化调度模型,第一阶段为虚拟电厂(virtual power plant,VPP)对源网荷储资源的聚合交易优化,第二阶段为基于源网荷储交易结果的RIEHS调度优化;最后,基于改进的IEEE 33节点配电系统和32节点巴厘岛配热系统,构建了包含3个虚拟电厂的RIEHS进行算例分析,结果表明所提方法能够通过交易手段挖掘用户侧资源的响应潜力,提高虚拟电厂的运营收益和系统运行的经济性,验证了调度方法的有效性。
YANG Dongmei, WANG Jun, DU Wei. Optimal dispatching for regional integrated electric and heating systems considering aggregation and transaction of generation-grid-load-storage[J]. Electric Power Construction, 2021, 42(10): 28-39.

The coordinated utilization of the resources of generation-grid-load-storage is an important means to promote the efficient operation of the regional integrated electric and heating system (RIEHS). This paper proposes an optimal dispatching method for RIEHS considering aggregation and transaction of generation-grid-load-storage. Firstly, the RIEHS dispatching framework is constructed, and the RIEHS dispatching organization process considering aggregation and transaction of generation-grid-load-storage is designed. Secondly, a two-stage optimization dispatching model of RIEHS is established. The first stage is the optimization of the aggregation and transaction of the resources of generation-grid-load-storage by the virtual power plant. The second stage is RIEHS dispatching optimization based on the transaction results of the resources of generation-grid-load-storage. Finally, based on the improved IEEE 33-node power distribution system and the 32-node Bali heating system, a RIEHS with three virtual power plants is constructed for simulation and analysis. The results show that the method proposed in the paper taps the response potential of user-side resources through transaction means, improves the operating income of virtual power plants and the economy of system operation. The effectiveness of the dispatching method has been verified.

[69]
帅挽澜, 朱自伟, 李雪萌, 等. 考虑风电消纳的综合能源系统“源-网-荷-储” 协同优化运行[J]. 电力系统保护与控制, 2021, 49(19): 18-26.
SHUAI Wanlan, ZHU Ziwei, LI Xuemeng, et al. “Source-network-load-storage” coordinated optimization operation for an integrated energy system considering wind power consumption[J]. Power System Protection and Control, 2021, 49(19): 18-26.
[70]
董海鹰, 贠韫韵, 马志程, 等. 计及多能转换及光热电站参与的综合能源系统低碳优化运行[J]. 电网技术, 2020, 44(10): 3689-3700.
DONG Haiying, YUN Yunyun, MA Zhicheng, et al. Low-carbon optimal operation of integrated energy system considering multi-energy conversion and concentrating solar power plant participation[J]. Power System Technology, 2020, 44(10): 3689-3700.
[71]
WEI Y, DU L, LI J, et al. Thermodynamic analysis of a new natural gas pressure energy grade heat sources[C]// 2023 Panda Forum on Power and Energy (PandaFPE). Chengdu, China. 2023:957-962.
[72]
唐成虹, 王靖韬, 曾博, 等. 计及含蒸汽热泵工业园区能量品位转换的综合能源优化调度[J]. 电力系统自动化, 2023, 47(2): 191-199.
TANG Chenghong, WANG Jingtao, ZENG Bo, et al. Optimal dispatch for integrated energy considering energy grade conversion in industrial park with steam heat pumps[J]. Automation of Electric Power Systems, 2023, 47(2): 191-199.

基金

国家自然科学基金项目(52307079)
湖南省自然科学基金资助项目(2024JJ6050)

编辑: 张小飞
PDF(1418 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/