基于节假日因素影响的高速服务区充电负荷建模与充电桩优化规划

李振坤, 肖天宇, 宋治儒, 张智泉

电力建设 ›› 2025, Vol. 46 ›› Issue (12) : 57-69.

PDF(3732 KB)
PDF(3732 KB)
电力建设 ›› 2025, Vol. 46 ›› Issue (12) : 57-69. DOI: 10.12204/j.issn.1000-7229.2025.12.006
规划建设

基于节假日因素影响的高速服务区充电负荷建模与充电桩优化规划

作者信息 +

Charging-Load Modeling and Optimal Charging-Pile Planning in Highway Service Areas Under the Influence of Holiday Factors

Author information +
文章历史 +

摘要

【目的】 在“双碳”背景下,我国电动汽车保有量迅速增加。然而,现有电动汽车充电设施的建设速度未能满足其快速增长的充电需求,高速公路服务区充电困难和排队拥堵问题尤为突出。 【方法】 首先,基于地理信息系统数据和实际交通流量,构建了出行概率矩阵,并引入充电焦虑系数,以增强模型对真实场景的适应能力。其次,提出“车流量对车速的影响系数”,进一步提高了车辆到达服务区时电池荷电状态的预测精度,并据此预测高速公路服务区的充电负荷。最后,基于预测结果建立了多服务区充电桩优化配置模型。该模型引入了基于车流量的动态权重调整机制,通过动态分配建设成本、运维成本和用户等待时间成本的权重,实现了在不同交通负荷条件下优化目标权重系数的灵活调整。 【结果】 仿真结果表明,充电桩数量的提升虽显著降低用户等待时间,但伴随投资成本上升;节假日期间充电负荷峰值较常态提升26.3%,呈“双峰”特征,且需求集中于行程后半段服务区;所提出的动态权重调整机制可随车流波动,实现成本与用户体验的自适应平衡。 【结论】通过引入动态权重调整机制,对多服务区充电桩配置进行优化,显著提升了高速公路充电网络在供需匹配中的灵活性与响应性;在车流波动与节假日需求峰值的双重作用下,实现了充电资源与用户需求的精准耦合,不仅提升了桩位利用率、缩短了排队时间,同时有效协调了建设与运维成本。

Abstract

[Objective] To achieve carbon-peaking and -neutrality goals, the number of electric vehicles (EVs) in China has grown rapidly. However, the growth of EV-charging infrastructure has lagged behind the rapid increase in demand. The problem of inadequate charging capacity is particularly severe in highway service areas, where challenges such as difficulty in accessing chargers and long waiting queues have become increasingly pronounced. [Methods] First, based on a geographic information system data and actual traffic flow, a travel probability matrix is constructed and a “charging-anxiety coefficient” is introduced to enhance the model’s adaptability to real-world scenarios. Second, a “traffic-flow-to-speed impact coefficient” is proposed to improve the accuracy of predicting the state of charge of EVs upon arrival at highway service areas; this coefficient serves as the foundation for forecasting charging loads. Finally, a multi-service-area charging-pile optimization model is developed based on the forecast results. This model incorporates a dynamic weight adjustment mechanism based on traffic flow, allowing for the flexible reallocation of construction, operation and maintenance, and user-waiting-time costs under varied traffic load conditions, thereby enabling adaptive optimization of objective function weights. [Results] Simulation results show that although increasing the number of charging piles significantly reduces user waiting times, it also leads to higher investment costs. Peak charging loads during holidays increase by 26.3% compared with those during normal periods, exhibiting a bimodal pattern, with demand concentrated in service areas located in the last half of travel routes. The proposed dynamic weight adjustment mechanism adapts to traffic flow fluctuations, enabling an adaptive balance between costs and user experience. [Conclusions] Introducing a dynamic weight adjustment mechanism and optimizing charging-pile allocation across multiple service areas significantly enhance the flexibility and responsiveness of highway charging networks in matching supply with demand. Under the combined effects of traffic flow fluctuations and holiday demand peaks, the proposed approach achieves precise coupling between charging resources and user needs. This not only improves pile utilization rates and reduces queuing times but also effectively balances construction and operational costs.

关键词

电动汽车 / 充电负荷预测 / 高速公路服务区 / 充电桩优化配置 / 出行概率矩阵 / 充电焦虑系数

Key words

electric vehicle / charging-load prediction / highway service area / charging-pile optimization allocation / dynamic weight adjustment mechanism / charging-anxiety factor

引用本文

导出引用
李振坤, 肖天宇, 宋治儒, . 基于节假日因素影响的高速服务区充电负荷建模与充电桩优化规划[J]. 电力建设. 2025, 46(12): 57-69 https://doi.org/10.12204/j.issn.1000-7229.2025.12.006
LI Zhenkun, XIAO Tianyu, SONG Zhiru, et al. Charging-Load Modeling and Optimal Charging-Pile Planning in Highway Service Areas Under the Influence of Holiday Factors[J]. Electric Power Construction. 2025, 46(12): 57-69 https://doi.org/10.12204/j.issn.1000-7229.2025.12.006
中图分类号: TM715   

参考文献

[1]
石天琛, 杨烨, 刘明光, 等. 基于有限信息的电动汽车用户充电行为特征识别[J]. 电力建设, 2024, 45(10): 69-77.
SHI Tianchen, YANG Ye, LIU Mingguang, et al. Identification of charging behavior characteristics of electric vehicle users based on limited information[J]. Electric Power Construction, 2024, 45(10): 69-77.
[2]
茆美琴, 林晨, 王吉文, 等. 大规模电动汽车参与区域电网深度调峰的分层可交易能源控制策略[J]. 中国电机工程学报, 2025, 45(11): 4187-4201.
MAO Meiqin, LIN Chen, WANG Jiwen, et al. Hierarchical transactive energy control strategies for deep peak regulation in regional power grid with large-scale electrical vehicles[J]. Proceedings of the CSEE, 2025, 45(11): 4187-4201.
[3]
邢强, 陈中, 冷钊莹, 等. 基于实时交通信息的电动汽车路径规划和充电导航策略[J]. 中国电机工程学报, 2020, 40(2): 534-550.
XING Qiang, CHEN Zhong, LENG Zhaoying, et al. Route planning and charging navigation strategy for electric vehicles based on real-time traffic information[J]. Proceedings of the CSEE, 2020, 40(2): 534-550.
[4]
刘巍炜, 周羽生, 周文晴, 等. 考虑异方差性的城市电网电动汽车充电负荷预测[J]. 电力系统自动化, 2024, 48(15): 54-63.
LIU Weiwei, ZHOU Yusheng, ZHOU Wenqing, et al. Charging load forecasting for electric vehicles in urban power grid considering heteroscedasticity[J]. Automation of Electric Power Systems, 2024, 48(15): 54-63.
[5]
罗澍忻, 麻敏华, 蒋林, 等. 考虑多时间尺度数据的中长期负荷预测方法[J]. 中国电机工程学报, 2020, 40(S1): 11-19.
LUO Shuxin, MA Minhua, JIANG Lin, et al. Medium and long-term load forecasting method considering multi-time scale data[J]. Proceedings of the CSEE, 2020, 40(S1): 11-19.
[6]
段秦尉, 何祥针, 潮铸, 等. 基于集合经验模态分解和Q学习策略的短期负荷预测模型[J]. 现代电力, 2025, 42(2): 360-368.
DUAN Qinwei, HE Xiangzhen, CHAO Zhu, et al. Short-term load forecasting model based on ensemble empirical mode decomposition and Q learning strategy[J]. Modern Electric Power, 2025, 42(2): 360-368.
[7]
丁乐言, 柯松, 张帆, 等. 考虑出行需求和引导策略的电动汽车充电负荷预测[J]. 电力建设, 2024, 45(6): 10-26.
摘要
随着电动汽车逐步替代燃料汽车,电动汽车充电负荷对电网造成的影响也越来越大,为此提出了一种考虑出行需求与引导策略的电动汽车充电负荷时空分布预测方法。首先,基于路段通行时间模型建立划分功能区域的半动态交通网模型;进一步,建立电动汽车能耗模型,在分析电价、气候和季节等因素对车主出行需求影响的同时,对充电需求、半动态交通网模型、能耗模型以及传统出行链进行修正;然后,考虑外部因素影响下车主的有限理性,提出引导策略下私家车和出租车充电负荷预测方法;最后,在半动态交通网模型中用改进的出行链和起讫点(origin-destination, OD)矩阵分别模拟私家车和出租车研究时间内的出行行为,通过在划分区域的半动态交通网仿真,验证了所提出的电动汽车充电负荷时空分布预测方法的有效性。仿真结果也表明电动汽车充电负荷时空分布预测情况与对外部影响因素的分析相符,同时提出的引导策略能提升车主决策的满意程度。
DING Leyan, KE Song, ZHANG Fan, et al. Forecasting of electric-vehicle charging load considering travel demand and guidance strategy[J]. Electric Power Construction, 2024, 45(6): 10-26.
 With electric vehicles (EVs) gradually replacing fueled vehicles, the impact of their charging load on the power grid is increasing. Therefore, this study proposes a spatial-temporal distribution prediction method for the charging load of EVs that considers travel demand and a guidance strategy. First, a semi-dynamic traffic network model that divides functional areas was developed based on a road travel time model. Furthermore, an energy-consumption model of EVs was established, and the charging demand, semi-dynamic transportation network model, energy consumption model, and traditional travel chain were revised according to the influence of the electricity price, climate, and season on the travel demand of vehicle owners. Considering the limited rationality of vehicle owners based on the influence of external factors, a charging load prediction method for private cars and taxis based on a guidance strategy is proposed. Finally, the modified trip chain and OD matrix were used to simulate the travel behavior of private cars and taxis, respectively, in the semi-dynamic traffic network model during the study period, and the validity of the proposed prediction method was verified through a simulation experiment of the semi-dynamic traffic network in the divided regions. The results show that the spatial-temporal distribution of the charging load for EVs is consistent with the analysis of external influencing factors, and the proposed guidance strategy can improve the satisfaction of vehicle owners. 
[8]
董晓红, 孔华志, 丁飞, 等. 考虑电池老化的电动汽车中长期充电负荷预测方法[J]. 电力系统自动化, 2024, 48(13): 109-119.
DONG Xiaohong, KONG Huazhi, DING Fei, et al. Medium-and long-term charging load forecasting method for electric vehicles considering battery aging[J]. Automation of Electric Power Systems, 2024, 48(13): 109-119.
[9]
李帅兵, 朱宇辰, 谭九鼎, 等. 计及负荷时空特性的高速公路链式微网光-储-充容量优化配置方法[J]. 电网技术, 2025, 49(7): 2768-2778.
LI Shuaibing, ZHU Yuchen, TAN Jiuding, et al. Optimal method for photovoltaic-storage-charging capacity configuration of microgrid-in-chain on expressways considering load spatio-temporal characteristics[J]. Power System Technology, 2025, 49(7): 2768-2778.
[10]
田梦瑶, 汤波, 杨秀, 等. 综合考虑充电需求和配电网接纳能力的电动汽车充电站规划[J]. 电网技术, 2021, 45(2): 498-509.
TIAN Mengyao, TANG Bo, YANG Xiu, et al. Planning of electric vehicle charging stations considering charging demands and acceptance capacity of distribution network[J]. Power System Technology, 2021, 45(2): 498-509.
[11]
赵峰, 李建霞, 高锋阳. 考虑不确定性的高速公路光储充电站选址定容[J]. 电力自动化设备, 2021, 41(8): 111-117.
ZHAO Feng, LI Jianxia, GAO Fengyang. Siting and sizing of photovoltaic-storage charging stations on highway considering uncertainties[J]. Electric Power Automation Equipment, 2021, 41(8): 111-117.
[12]
肖白, 高峰. 含不同容量充电桩的电动汽车充电站选址定容优化方法[J]. 电力自动化设备, 2022, 42(10): 157-166.
XIAO Bai, GAO Feng. Optimization method of electric vehicle charging stations' site selection and capacity determination considering charging piles with different capacities[J]. Electric Power Automation Equipment, 2022, 42(10): 157-166.
[13]
刘东林, 王育飞, 张宇, 等. 基于Huff模型的电动汽车充电站选址定容方法[J]. 电力自动化设备, 2023, 43(11): 103-110.
LIU Donglin, WANG Yufei, ZHANG Yu, et al. Siting and sizing method of electric vehicle charging stations based on Huff model[J]. Electric Power Automation Equipment, 2023, 43(11): 103-110.
[14]
庞松岭, 赵雨楠, 张瑞恩, 等. 市场环境下计及用户响应的电动汽车充电站优化运行策略[J]. 电力建设, 2024, 45(10): 59-68.
PANG Songling, ZHAO Yunan, ZHANG Ruien, et al. The optimal operation strategy of electric vehicle charging stations considering user response in market environment[J]. Electric Power Construction, 2024, 45(10): 59-68.
[15]
张夏韦, 梁军, 王要强, 等. 电动汽车充电负荷时空分布预测研究综述[J]. 电力建设, 2023, 44(12): 161-173.
摘要
随着碳达峰、碳中和目标的提出,电动汽车以其绿色、低碳、节能环保优势逐渐普及。电动汽车兼具负荷与储能双重特性,其充放电行为具有时间和空间的随机性和波动性,精准的电动汽车充电负荷时空分布预测是研究电动汽车入网影响、电网规划运行、与电网互动的基础。首先,分析影响电动汽车充电负荷时空分布的主要因素;然后,对充电负荷建模、时空分布预测方法进行系统阐述;随后,考虑电动汽车可以作为移动储能装置参与电网互动,评估其放电潜力并综述电动汽车入网(vehicle to grid, V2G)技术研究现状;最后,总结现有研究方法面临的挑战并进行展望。
ZHANG Xiawei, LIANG Jun, WANG Yaoqiang, et al. Overview of research on spatiotemporal distribution prediction of electric vehicle charging[J]. Electric Power Construction, 2023, 44(12): 161-173.
With national targets for carbon peaking and carbon neutrality, electric vehicles (EVs) are gaining popularity owing to their advantages of being green, low-carbon, energy-saving, and environmentally friendly. EVs have both load and energy storage characteristics, and their charge-discharge behavior is random and fluctuates in time and space. Accurate prediction of the spatiotemporal distribution of EV charging and discharging loads is the basis for studying the influence of EV entering the grid, power grid planning and operation, and interaction with the power grid. The main factors influencing the prediction of the spatiotemporal distribution of the EV charging load are analyzed. The modeling of the charging load and prediction method for the spatial and temporal distributions are systematically described. Considering that electric vehicles can be used as mobile energy-storage devices to participate in grid interactions, the discharge potential is evaluated, and the research scenario of V2G technology is reviewed. Finally, the challenges faced by existing research methods are summarized and discussed.
[16]
赵丽萍. “双碳” 目标下高速公路服务区充电桩配置规模测算[J]. 中国公路, 2023(1): 18-21.
ZHAO Liping. Calculation of charging pile configuration scale in expressway service area under the goal of “double carbon”[J]. China Highway, 2023(1): 18-21.
[17]
李玲, 曹锦业, Nikita Tomin, 等. 计及电动汽车接入的区域综合能源系统双层日前协调优化调度[J]. 电力建设, 2023, 44(5): 23-33.
摘要
规模化电动汽车(electric vehicles, EV)的接入对区域综合能源系统(regional integrated energy system,RIES)优化调度提出了新的挑战,文章提出了计及分布式电源和电动汽车源荷双向互动的RIES双层日前优化调度策略。首先,采用蒙特卡洛法模拟电动汽车无序充电,在此基础上利用分时电价引导负荷侧的电动汽车有序充电;然后,基于电力市场和碳交易市场,充分考虑源侧风光出力和负荷侧价格型需求响应等过程中的不确定性因素,以日系统经济成本和碳交易成本最低为目标进行系统优化调度,并采用改进粒子群算法进行求解;最后,通过仿真算例分析可得,文章提出的双层优化调度策略能够有效降低系统的负荷峰谷差,在实现电动汽车有序充电的同时,能够有效提升用户用电满意度、降低碳排放量以及增加系统经济效益。
LI Ling, CAO Jinye, TOMIN N, et al. Bi-level coordinated day-ahead optimal dispatch of regional integrated energy system considering the integrations of electric vehicles[J]. Electric Power Construction, 2023, 44(5): 23-33.

Access to large-scale electric vehicles poses new challenges for the optimal dispatching of a regional integrated energy system (RIES). This study proposes a bi-level day-ahead scheduling strategy for a RIES while considering the integration of electric vehicles. First, the Monte Carlo method was used to simulate the disordered charging of electric vehicles. On this basis, the time-of-use price was used to guide the orderly charging of electric vehicles on the load side. Next, based on the electricity and carbon trading markets and fully considering the uncertainty factors in the process of wind power output on the source side and the demand-side response on the load side, the system was optimized and scheduled to minimize the daily economic and carbon trading costs. An improved particle swarm optimization algorithm was used to solve the problem. Finally, through the analysis of simulated examples, it was concluded that the bi-level optimal scheduling strategy proposed in this study can effectively reduce the peak-valley difference of the system load, improve the electricity consumption satisfaction of users, reduce carbon emissions, and increase the economic benefits of the system, while realizing the orderly charging of electric vehicles.

[18]
万玲玲, 陈中, 王毅, 等. 考虑能量时空转移的城市规模化共享电动汽车充放电优化调度[J]. 电力建设, 2023, 44(6): 135-143.
摘要
共享电动汽车(electric vehicles,EV)的发展不仅为用户提供了便捷的出行方式,也为城市电网提供了高效的灵活调节资源,规模化共享EV出行和充放电行为复杂、随机性强,对其建立充放电控制模型需要考虑多元利益主体的在线滚动协同,计算量大且实时性要求高。首先,采用基于荷电状态区间的聚合建模方法,根据荷电状态确定共享电动汽车的能量时空转移状态,对规模化EV的充放电优化调度进行降维处理。然后,考虑运营商利益、有限理性用户累积前景效用以及电网需求响应等多元主体收益,构建了基于深度强化学习的充放电优化模型,并采用深度Q网络方法进行求解,可实时在线获得面向城市不同区域共享EV的充放电聚合优化策略,有效应对随机性带来的影响。最后,结合某市9区域共5 000辆共享EV的实际运营数据,通过算例分析验证了城市内部共享EV具有能量时空转移特性,所提建模方法与求解策略在保证多元主体利益的目标下能够有效解决大规模共享EV充放电优化调度问题。
WAN Lingling, CHEN Zhong, WANG Yi, et al. Optimal charging and discharging scheduling of urban large-scale shared electric vehicles considering energy temporal and spatial transfer[J]. Electric Power Construction, 2023, 44(6): 135-143.

The development of shared electric vehicles does not only provide users with a convenient way to travel but also provides efficient and flexible adjustment for urban power grid resources, large-scale shared electric vehicle (EV) travel and charge-discharge behavior, strong randomness, complex charging and discharging control model online rolling together to consider multiple stakeholders, large amount of calculation, and high real-time requirements. First, this study uses the aggregation modeling method based on the SOC interval to determine the energy transition state in time or space of shared EV; it also reduces the dimension of the optimal charging and discharging schedule of large-scale EVs. Thereafter, we consider the operator profit and utility of the limited rational users' cumulative prospect as well as the power demand response on multiple subject gains. Moreover, the optimization model of charge and discharge depth is constructed based on reinforcement learning. Next, the deep Q net is applied to solve the network method, and real-time online sharing of EV charging and discharging aggregation optimization strategy in the different regions is achieved. In addition, the model effectively copes with the effects of randomness. Finally, combined with the actual operation data of 5000 shared EVs in 9 regions of a city, numerical example analyses verify that shared EVs within the city have the characteristics of time-space transfer of energy. The modeling method and solving strategy proposed in this study are effective in solving the optimization scheduling problem of large-scale shared EV charging and discharging while aiming to ensure the interests of multiple subjects.

[19]
马苗苗, 任智伟, 刘立成, 等. 考虑新能源消纳的电动汽车有序充电控制策略[J]. 太阳能学报, 2024, 45(8): 94-103.
MA Miaomiao, REN Zhiwei, LIU Licheng, et al. Orderly charging control strategy for electric vehicles considering new energy accommodation[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 94-103.
[20]
谢桦, 刘哲, 王云嘉, 等. 计及道路交通指数影响的公交充电站充电桩优化配置方法[J]. 电力系统自动化, 2024, 48(15): 35-43.
XIE Hua, LIU Zhe, WANG Yunjia, et al. Optimal configuration method for charging piles in bus charging stations considering influence of road traffic indices[J]. Automation of Electric Power Systems, 2024, 48(15): 35-43.
[21]
穆云飞, 金尚婷, 赵康宁, 等. “人-车-桩-路-网” 深度耦合下的配电网协同规划与运行优化[J]. 电力系统自动化, 2024, 48(7): 24-37.
MU Yunfei, JIN Shangting, ZHAO Kangning, et al. Collaborative planning and operation optimization of distribution networks under deep coupling of drivers, vehicles, piles, traffic and networks[J]. Automation of Electric Power Systems, 2024, 48(7): 24-37.
[22]
罗平, 杨泽喆, 张嘉昊, 等. 考虑多场景充电需求预测的电动汽车充电站规划[J]. 高电压技术, 2025, 51(1): 368-378.
LUO Ping, YANG Zezhe, ZHANG Jiahao, et al. Electric vehicle charging station planning considering multi-scene charging demand forecasting[J]. High Voltage Engineering, 2025, 51(1): 368-378.
[23]
陈立兴, 韩晓新, 季振亚, 等. 高速公路充电网络充电设施运行状态时空预测建模[J]. 电力自动化设备, 2021, 41(8): 118-124.
CHEN Lixing, HAN Xiaoxin, JI Zhenya, et al. Spatio-temporal forecasting modeling for running status of charging facilities in highway charging network[J]. Electric Power Automation Equipment, 2021, 41(8): 118-124.
[24]
刘超, 李青, 马明明, 等. 基于DATA模型的电动汽车充电需求时空演化规律分析[J]. 电力系统自动化, 2023, 47(12): 86-94.
LIU Chao, LI Qing, MA Mingming, et al. Analysis on spatial-temporal evolution law of electric vehicle charging demand based on dynamic activity-travel assignment model[J]. Automation of Electric Power Systems, 2023, 47(12): 86-94.
[25]
DONG X H, MU Y F, JIA H J, et al. Planning of fast EV charging stations on a round freeway[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1452-1461.
[26]
周健树, 向月, 张新, 等. 基于深度强化学习的高速公路服务区新能源充电站两阶段优化调控策略[J]. 中国电机工程学报, 2025, 45(11): 4130-4144.
ZHOU Jianshu, XIANG Yue, ZHANG Xin, et al. Two-stage optimal dispatch strategy of new energy charging station in highway service area based on deep reinforcement learning[J]. Proceedings of the CSEE, 2025, 45(11): 4130-4144.
[27]
卢锦玲, 胡兴华, 张学哲, 等. 基于负荷预测和无迹粒子滤波的配电网动态状态估计[J]. 电力系统及其自动化学报, 2024, 36(4): 133-140, 158.
LU Jinling, HU Xinghua, ZHANG Xuezhe, et al. Dynamic state estimation of distribution network based on load forecasting and unscented particle filter[J]. Proceedings of the CSU-EPSA, 2024, 36(4): 133-140, 158.
[28]
叶永盛, 徐燕龙, 李阳, 等. 基于相似周和模态分解的融合模型电动汽车负荷预测[J]. 电网技术, 2025, 49(5): 1910-1919.
YE Yongsheng, XU Yanlong, LI Yang, et al. Electric vehicle load forecasting with fusion model based on similar weeks and mode decomposition[J]. Power System Technology, 2025, 49(5): 1910-1919.
[29]
黄一修, 肖仕武. 考虑气象因素的高速公路服务区电动汽车充电负荷预测[J]. 电力自动化设备, 2025, 45(1): 192-199.
HUANG Yixiu, XIAO Shiwu. Forecasting of electric vehicle charging load in highway service areas considering meteorological factors[J]. Electric Power Automation Equipment, 2025, 45(1): 192-199.
[30]
胡俊杰, 李儒州, 刘雪涛. 基于用户决策行为模拟的服务区充换电站定容规划研究[J]. 电网技术, 2024, 48(10): 4242-4253.
HU Junjie, LI Ruzhou, LIU Xuetao. Research on capacity planning of charging and swapping stations in a service area based on the simulation of users' decision-making behavior[J]. Power System Technology, 2024, 48(10): 4242-4253.
[31]
HUSSAIN A, LU Q C, RIZVI S S, et al. Short term demand forecasting of electric vehicle charging stations using context aware temporal transformer model[J]. Scientific Reports, 2025, 15: 36652.
[32]
石文婷. 基于时空信息的高速公路出入口交通车流量预测[J]. 西部交通科技, 2020(11): 175-179.
SHI Wenting. Traffic flow prediction of expressway entrance and exit based on spatio-temporal information[J]. Western China Communications Science & Technology, 2020(11): 175-179.
[33]
HOUALEF A R, DELAVERNHE F, SENOUCI S M, et al. Data-driven, personalized route planning for connected electric vehicles: Optimizing time, energy, and charging stops[J]. Applied Energy, 2025, 402: 126887.
[34]
JAMIL A R M, NOWER N. Dynamic weight-based multi-objective reward architecture for adaptive traffic signal control system[J]. International Journal of Intelligent Transportation Systems Research, 2022, 20(2): 495-507.
[35]
MATKOVIC D, MATIJASEVIC PILSKI T, CAPUDER T. Dynamic pricing strategy based on day-ahead charging demand forecasts[J]. Sustainable Energy, Grids and Networks, 2025, 44: 101897.
[36]
中国电动汽车充电基础设施促进联盟. 2023—2024中国电动汽车充电基础设施发展年度报告[R]. 北京: 中国电动汽车充电基础设施促进联盟, 2024.
[37]
国务院办公厅. 国务院办公厅关于进一步构建高质量充电基础设施体系的指导意见[Z]. 北京: 国务院办公厅, 2023.
[38]
交通运输部. 关于加快推进2024年公路服务区充电基础设施建设工作的通知[Z]

基金

国家自然科学基金项目(52177098)

编辑: 魏希辉
PDF(3732 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/